
2025-05-29 07:20:47
MetaSTNet: Multimodal Meta-learning for Cellular Traffic Conformal Prediction
Hui Ma, Kai Yang
https://arxiv.org/abs/2505.21553 https://
MetaSTNet: Multimodal Meta-learning for Cellular Traffic Conformal Prediction
Hui Ma, Kai Yang
https://arxiv.org/abs/2505.21553 https://
This https://arxiv.org/abs/2412.18872 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_…
Confusion-driven machine learning of structural phases of a flexible, magnetic Stockmayer polymer
Dilina Perera, Samuel McAllister, Joan Josep Cerd\`a, Thomas Vogel
https://arxiv.org/abs/2506.20899
Network Structures as an Attack Surface: Topology-Based Privacy Leakage in Federated Learning
Murtaza Rangwala, Richard O. Sinnott, Rajkumar Buyya
https://arxiv.org/abs/2506.19260
Comparative analysis of financial data differentiation techniques using LSTM neural network
Dominik Stempie\'n, Janusz Gajda
https://arxiv.org/abs/2505.19243
This https://arxiv.org/abs/2502.03210 has been replaced.
initial toot: https://mastoxiv.page/@arX…
Optimal Parameter Design for Power Electronic Converters Using a Probabilistic Learning-Based Stochastic Surrogate Model
Akash Mahajan, Shivam Chaturvedi, Srijita Das, Wencong Su, Van-Hai Bui
https://arxiv.org/abs/2506.20987
Uncertainty-Aware Machine-Learning Framework for Predicting Dislocation Plasticity and Stress-Strain Response in FCC Alloys
Jing Luo, Yejun Gu, Yanfei Wang, Xiaolong Ma, Jaafar. A El-Awady
https://arxiv.org/abs/2506.20839
Testing a 95 GeV Scalar at the CEPC with Machine Learning
Yabo Dong, Manqi Ruan, Kun Wang, Haijun Yang, Jingya Zhu
https://arxiv.org/abs/2506.21454 https:/…
GANet-Seg: Adversarial Learning for Brain Tumor Segmentation with Hybrid Generative Models
Qifei Cui, Xinyu Lu
https://arxiv.org/abs/2506.21245 https://
Learning-Based Distance Estimation for 360{\deg} Single-Sensor Setups
Yitong Quan, Benjamin Kiefer, Martin Messmer, Andreas Zell
https://arxiv.org/abs/2506.20586
Learning Magnitude Distribution of Sound Fields via Conditioned Autoencoder
Shoichi Koyama, Kenji Ishizuka
https://arxiv.org/abs/2506.16729 https://…
Frequency Resource Management in 6G User-Centric CFmMIMO: A Hybrid Reinforcement Learning and Metaheuristic Approach
Selina Cheggour, Valeria Loscri
https://arxiv.org/abs/2505.22443
DPG loss functions for learning parameter-to-solution maps by neural networks
Pablo Cort\'es Castillo, Wolfgang Dahmen, Jay Gopalakrishnan
https://arxiv.org/abs/2506.18773
This https://arxiv.org/abs/2505.09551 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_qfi…
Where is AIED Headed? Key Topics and Emerging Frontiers (2020-2024)
Shihui Feng, Huilin Zhang, Dragan Ga\v{s}evi\'c
https://arxiv.org/abs/2506.20971 ht…
Joint Quantization and Pruning Neural Networks Approach: A Case Study on FSO Receivers
Mohanad Obeed, Ming Jian
https://arxiv.org/abs/2506.20084 https://…
NetSenseML: Network-Adaptive Compression for Efficient Distributed Machine Learning
Yisu Wang, Xinjiao Li, Ruilong Wu, Huangxun Chen, Dirk Kutscher
https://arxiv.org/abs/2506.16235
Robust Anomaly Detection in Network Traffic: Evaluating Machine Learning Models on CICIDS2017
Zhaoyang Xu, Yunbo Liu
https://arxiv.org/abs/2506.19877 https…
Embedded FPGA Acceleration of Brain-Like Neural Networks: Online Learning to Scalable Inference
Muhammad Ihsan Al Hafiz, Naresh Ravichandran, Anders Lansner, Pawel Herman, Artur Podobas
https://arxiv.org/abs/2506.18530
Excited to be travelling to Paris next week (train obviously) to attend the Sunbelt conference of the International Network of Social Network Analysis
It's my first Sunbelt since 2019 and I'm really looking forward to connecting with people and learning about latest research
#Sunbelt2025
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[4/9]:
- Eau De $Q$-Network: Adaptive Distillation of Neural Networks in Deep Reinforcement Learning
Th\'eo Vincent, Tim Faust, Yogesh Tripathi, Jan Peters, Carlo D'Eramo
Physics-Informed Machine Learning Approach to Modeling Line Emission from Helium-Containing Plasmas
Shin Kajita
https://arxiv.org/abs/2506.20117 https://…
Topic: "The New Mastodon Is Interesting"
This is another screenshot of a profile on Mastodon showcasing the Mastodon Feature where 2 people you follow(which are not mutual follows!) show up in
"Followed by" and "and x others you know"
What do you think about the way this feature is designed?
Good design?
Needs improvement?
Perfect?
#MastodonFeature
CIRO7.2: A Material Network with Circularity of -7.2 and Reinforcement-Learning-Controlled Robotic Disassembler
Federico Zocco, Monica Malvezzi
https://arxiv.org/abs/2506.11748
A Neural-Operator Surrogate for Platelet Deformation Across Capillary Numbers
Marco Laudato
https://arxiv.org/abs/2506.20341 https://…
Deformable Medical Image Registration with Effective Anatomical Structure Representation and Divide-and-Conquer Network
Xinke Ma, Yongsheng Pan, Qingjie Zeng, Mengkang Lu, Bolysbek Murat Yerzhanuly, Bazargul Matkerim, Yong Xia
https://arxiv.org/abs/2506.19222
A Comparative Study of NAFNet Baselines for Image Restoration
Vladislav Esaulov, M. Moein Esfahani
https://arxiv.org/abs/2506.19845 https://
Learning to Maximize Quantum Neural Network Expressivity via Effective Rank
Juan Yao
https://arxiv.org/abs/2506.15375 https://arxiv.o…
Review of Machine Learning for Real-Time Analysis at the Large Hadron Collider experiments ALICE, ATLAS, CMS and LHCb
Laura Boggia, Carlos Cocha, Fotis Giasemis, Joachim Hansen, Patin Inkaew, Kaare Endrup Iversen, Pratik Jawahar, Henrique Pineiro Monteagudo, Micol Olocco, Sten Astrand, Martino Borsato, Leon Bozianu, Steven Schramm, the SMARTHEP Network
Neural Functionally Generated Portfolios
Michael Monoyios, Olivia Pricilia
https://arxiv.org/abs/2506.19715 https://arxiv.org/pdf/250…
Decision-Focused Learning for Neural Network-Constrained Optimization: Application to HVAC Management System
Pietro Favaro, Jean-Fran\c{c}ois Toubeau, Fran\c{c}ois Vall\'ee, Yury Dvorkin
https://arxiv.org/abs/2506.19717
KnowML: Improving Generalization of ML-NIDS with Attack Knowledge Graphs
Xin Fan Guo, Albert Merono Penuela, Sergio Maffeis, Fabio Pierazzi
https://arxiv.org/abs/2506.19802
SuperSONIC: Cloud-Native Infrastructure for ML Inferencing
Dmitry Kondratyev, Benedikt Riedel, Yuan-Tang Chou, Miles Cochran-Branson, Noah Paladino, David Schultz, Mia Liu, Javier Duarte, Philip Harris, Shih-Chieh Hsu
https://arxiv.org/abs/2506.20657
Fast State-Augmented Learning for Wireless Resource Allocation with Dual Variable Regression
Yigit Berkay Uslu, Navid NaderiAlizadeh, Mark Eisen, Alejandro Ribeiro
https://arxiv.org/abs/2506.18748
Learning to assess subjective impressions from speech
Yuto Kondo, Hirokazu Kameoka, Kou Tanaka, Takuhiro Kaneko, Noboru Harada
https://arxiv.org/abs/2506.19335
Rank Inspired Neural Network for solving linear partial differential equations
Wentao Peng, Yunqing Huang, Nianyu Yi
https://arxiv.org/abs/2506.17654 https…
Leveraging Transfer Learning and User-Specific Updates for Rapid Training of BCI Decoders
Ziheng Chen, Po T. Wang, Mina Ibrahim, Shivali Baveja, Rong Mu, An H. Do, Zoran Nenadic
https://arxiv.org/abs/2506.14120
Data-driven Identification of Attractors Using Machine Learning
Marcio Gameiro, Brittany Gelb, William Kalies, Miroslav Kramar, Konstantin Mischaikow, Paul Tatasciore
https://arxiv.org/abs/2506.06492
Machine Learning Acceleration of Neutron Star Pulse Profile Modeling
Preston G. Waldrop, Dimitrios Psaltis, Tong Zhao
https://arxiv.org/abs/2506.11194 http…
A Deep Generative Model for the Simulation of Discrete Karst Networks
Dany Lauzon, Julien Straubhaar, Philippe Renard
https://arxiv.org/abs/2506.09832 http…
An Attack Method for Medical Insurance Claim Fraud Detection based on Generative Adversarial Network
Yining Pang, Chenghan Li
https://arxiv.org/abs/2506.19871
NeuroCoreX: An Open-Source FPGA-Based Spiking Neural Network Emulator with On-Chip Learning
Ashish Gautam, Prasanna Date, Shruti Kulkarni, Robert Patton, Thomas Potok
https://arxiv.org/abs/2506.14138
Learning Heat Transport Kernels Using a Nonlocal Heat Transport Theory-Informed Neural Network
Mufei Luo, Charles Heaton, Yizhen Wang, Daniel Plummer, Mila Fitzgerald, Francesco Miniati, Sam M. Vinko, Gianluca Gregori
https://arxiv.org/abs/2506.16619
An introduction to Neural Networks for Physicists
G. Caf\'e de Miranda, Gubio G. de Lima, Tiago de S. Farias
https://arxiv.org/abs/2505.13042 https://
Simulation of a closed-loop dc-dc converter using a physics-informed neural network-based model
Marc-Antoine Coulombe, Maxime Berger, Antoine Lesage-Landry
https://arxiv.org/abs/2506.19178
Diverse mean-field dynamics of clustered, inhibition-stabilized Hawkes networks via combinatorial threshold-linear networks
Caitlin Lienkaemper, Gabriel Koch Ocker
https://arxiv.org/abs/2506.06234
Deep Potential-Driven Molecular Dynamics of CO Ice Analogues: Investigating Desorption Following Vibrational Excitation
Maxime Infuso, Samuel Del Fr\'e, Gilberto A. Alou, Mathieu Bertin, Jean-Hugues Fillion, Alejandro Rivero Santamar\'ia, Maurice Monnerville
https://arxiv.org/abs/2506.10882…
ReCoGNet: Recurrent Context-Guided Network for 3D MRI Prostate Segmentation
Ahmad Mustafa, Reza Rastegar, Ghassan AlRegib
https://arxiv.org/abs/2506.19687 …
Deep learning of thermodynamic laws from microscopic dynamics
Hiroto Kuroyanagi, Tatsuro Yuge
https://arxiv.org/abs/2506.01506 https://
Numerical simulation of transient heat conduction with moving heat source using Physics Informed Neural Networks
Anirudh Kalyan, Sundararajan Natarajan
https://arxiv.org/abs/2506.17726
Hierarchical Multi-Agent Reinforcement Learning-based Coordinated Spatial Reuse for Next Generation WLANs
Jiaming Yu, Le Liang, Hao Ye, Shi Jin
https://arxiv.org/abs/2506.14187
Determining the chemical potential via universal density functional learning
Florian Samm\"uller, Matthias Schmidt
https://arxiv.org/abs/2506.15608 ht…
An In-situ Solid Fuel Ramjet Thrust Monitoring and Regulation Framework Using Neural Networks and Adaptive Control
Ryan DeBoskey, Parham Oveissi, Venkat Narayanaswamy, Ankit Goel
https://arxiv.org/abs/2506.08157
This https://arxiv.org/abs/2412.16387 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csIT_…
This https://arxiv.org/abs/2504.11918 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_…
Improving spliced alignment by modeling splice sites with deep learning
Siying Yang, Neng Huang, Heng Li
https://arxiv.org/abs/2506.12986 https://
Dynamic Preference Multi-Objective Reinforcement Learning for Internet Network Management
DongNyeong Heo, Daniela Noemi Rim, Heeyoul Choi
https://arxiv.org/abs/2506.13153
This https://arxiv.org/abs/2504.05424 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csSE_…
Benchmarking Universal Machine Learning Interatomic Potentials for Real-Time Analysis of Inelastic Neutron Scattering Data
Bowen Han, Yongqiang Cheng
https://arxiv.org/abs/2506.01860
Fiber Signal Denoising Algorithm using Hybrid Deep Learning Networks
Linlin Wang, Wei Wang, Dezhao Wang, Shanwen Wang
https://arxiv.org/abs/2506.15125 http…
A Deep Convolutional Neural Network-Based Novel Class Balancing for Imbalance Data Segmentation
Atifa Kalsoom, M. A. Iftikhar, Amjad Ali, Zubair Shah, Shidin Balakrishnan, Hazrat Ali
https://arxiv.org/abs/2506.18474
Demographics-Informed Neural Network for Multi-Modal Spatiotemporal forecasting of Urban Growth and Travel Patterns Using Satellite Imagery
Eugene Kofi Okrah Denteh, Andrews Danyo, Joshua Kofi Asamoah, Blessing Agyei Kyem, Armstrong Aboah
https://arxiv.org/abs/2506.12456
Rodrigues Network for Learning Robot Actions
Jialiang Zhang, Haoran Geng, Yang You, Congyue Deng, Pieter Abbeel, Jitendra Malik, Leonidas Guibas
https://arxiv.org/abs/2506.02618
This https://arxiv.org/abs/2506.01016 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csLG_…
A Hybrid Neural Network -- Polynomial Series Scheme for Learning Invariant Manifolds of Discrete Dynamical Systems
Dimitrios G. Patsatzis, Nikolaos Kazantzis, Ioannis G. Kevrekidis, Constantinos Siettos
https://arxiv.org/abs/2506.13950
Beyond Scaling: Chemical Intuition as Emergent Ability of Universal Machine Learning Interatomic Potentials
Shinnosuke Hattori, Kohei Shimamura, Aiichiro Nakano, Rajiv K. Kalia, Priya Vashishta, Ken-ichi Nomura
https://arxiv.org/abs/2506.07579
Chameleon: A MatMul-Free Temporal Convolutional Network Accelerator for End-to-End Few-Shot and Continual Learning from Sequential Data
Douwe den Blanken, Charlotte Frenkel
https://arxiv.org/abs/2505.24852
A retrospective on DISPEED -- Leveraging heterogeneity in a drone swarm for IDS execution
Vincent Lannurien, Cam\'elia Slimani, Louis Morge-Rollet, Laurent Lemarchand, David Espes, Fr\'ed\'eric Le Roy, Jalil Boukhobza
https://arxiv.org/abs/2506.11800
Learning Chaotic Dynamics with Neuromorphic Network Dynamics
Yinhao Xu, Georg A. Gottwald, Zdenka Kuncic
https://arxiv.org/abs/2506.10773 https://
This https://arxiv.org/abs/2506.04668 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csCV_…
Tensor Network for Anomaly Detection in the Latent Space of Proton Collision Events at the LHC
Ema Puljak, Maurizio Pierini, Artur Garcia-Saez
https://arxiv.org/abs/2506.00102
MoNetV2: Enhanced Motion Network for Freehand 3D Ultrasound Reconstruction
Mingyuan Luo, Xin Yang, Zhongnuo Yan, Yan Cao, Yuanji Zhang, Xindi Hu, Jin Wang, Haoxuan Ding, Wei Han, Litao Sun, Dong Ni
https://arxiv.org/abs/2506.15835
Neighborhood Overlap-Aware High-Order Graph Neural Network for Dynamic Graph Learning
Ling Wang
https://arxiv.org/abs/2506.06728 https://
This https://arxiv.org/abs/2406.02436 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csRO_…
Getting More from Less: Transfer Learning Improves Sleep Stage Decoding Accuracy in Peripheral Wearable Devices
William G Coon, Diego Luna, Akshita Panagrahi, Matthew Reid, Mattson Ogg
https://arxiv.org/abs/2506.00730
Reinforcement Learning-Based Policy Optimisation For Heterogeneous Radio Access
Anup Mishra, \v{C}edomir Stefanovi\'c, Xiuqiang Xu, Petar Popovski, Israel Leyva-Mayorga
https://arxiv.org/abs/2506.15273
Advancing Exchange Rate Forecasting: Leveraging Machine Learning and AI for Enhanced Accuracy in Global Financial Markets
Md. Yeasin Rahat, Rajan Das Gupta, Nur Raisa Rahman, Sudipto Roy Pritom, Samiur Rahman Shakir, Md Imrul Hasan Showmick, Md. Jakir Hossen
https://arxiv.org/abs/2506.09851
Inferring Material Parameters from Current-Voltage Curves in Organic Solar Cells via Neural-Network-Based Surrogate Models
Eunchi Kim, Paula Hartnagel, Barbara Urbano, Leonard Christen, Thomas Kirchartz
https://arxiv.org/abs/2506.13308
Reactive Transport Modeling with Physics-Informed Machine Learning for Critical Minerals Applications
K. Adhikari, Md. Lal Mamud, M. K. Mudunuru, K. B. Nakshatrala
https://arxiv.org/abs/2506.15960
Make Your AUV Adaptive: An Environment-Aware Reinforcement Learning Framework For Underwater Tasks
Yimian Ding, Jingzehua Xu, Guanwen Xie, Shuai Zhang, Yi Li
https://arxiv.org/abs/2506.15082
Vector Representations of Vessel Trees
James Batten, Michiel Schaap, Matthew Sinclair, Ying Bai, Ben Glocker
https://arxiv.org/abs/2506.11163 https://
MAGNet: A Multi-Scale Attention-Guided Graph Fusion Network for DRC Violation Detection
Weihan Lu, Hong Cai Chen
https://arxiv.org/abs/2506.07126 https://
Graph-based Gossiping for Communication Efficiency in Decentralized Federated Learning
Huong Nguyen, Hong-Tri Nguyen, Praveen Kumar Donta, Susanna Pirttikangas, Lauri Lov\'en
https://arxiv.org/abs/2506.10607
Congestion-Aware Path Selection for Load Balancing in AI Clusters
Erfan Nosrati, Majid Ghaderi
https://arxiv.org/abs/2506.08132 https://
This https://arxiv.org/abs/2506.05008 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csCV_…
FAD-Net: Frequency-Domain Attention-Guided Diffusion Network for Coronary Artery Segmentation using Invasive Coronary Angiography
Nan Mu, Ruiqi Song, Xiaoning Li, Zhihui Xu, Jingfeng Jiang, Chen Zhao
https://arxiv.org/abs/2506.11454
Towards AI-Driven RANs for 6G and Beyond: Architectural Advancements and Future Horizons
Mathushaharan Rathakrishnan, Samiru Gayan, Rohit Singh, Amandeep Kaur, Hazer Inaltekin, Sampath Edirisinghe, H. Vincent Poor
https://arxiv.org/abs/2506.16070
A Survey on the Role of Artificial Intelligence and Machine Learning in 6G-V2X Applications
Donglin Wang, Anjie Qiu, Qiuheng Zhou, Hans D. Schotten
https://arxiv.org/abs/2506.09512
Brain Network Analysis Based on Fine-tuned Self-supervised Model for Brain Disease Diagnosis
Yifei Tang, Hongjie Jiang, Changhong Jing, Hieu Pham, Shuqiang Wang
https://arxiv.org/abs/2506.11671
Understanding Stability Mechanisms in Single-Atom Alloys with Theory-infused Deep Learning
Yang Huang, Shih-Han Wang, Shuyi Cao, Luke E. K. Achenie, Hongliang Xin
https://arxiv.org/abs/2506.03031
Pegasus: A Universal Framework for Scalable Deep Learning Inference on the Dataplane
Yinchao Zhang, Su Yao, Yong Feng, Kang Chen, Tong Li, Zhuotao Liu, Yi Zhao, Lexuan Zhang, Xiangyu Gao, Feng Xiong, Qi Li, Ke Xu
https://arxiv.org/abs/2506.05779
Weak TransNet: A Petrov-Galerkin based neural network method for solving elliptic PDEs
Zhihang Xu, Min Wang, Zhu Wang
https://arxiv.org/abs/2506.14812 http…
Recursive KalmanNet: Deep Learning-Augmented Kalman Filtering for State Estimation with Consistent Uncertainty Quantification
Hassan Mortada, Cyril Falcon, Yanis Kahil, Math\'eo Clavaud, Jean-Philippe Michel
https://arxiv.org/abs/2506.11639
Deep Reinforcement Learning-Based RAN Slicing with Efficient Inter-Slice Isolation in Tactical Wireless Networks
Abderrahime Filali, Diala Naboulsi, Georges Kaddoum
https://arxiv.org/abs/2506.09039
Solving engineering eigenvalue problems with neural networks using the Rayleigh quotient
Conor Rowan, John Evans, Kurt Maute, Alireza Doostan
https://arxiv.org/abs/2506.04375
Bridging Subjective and Objective QoE: Operator-Level Aggregation Using LLM-Based Comment Analysis and Network MOS Comparison
Parsa Hassani Shariat Panahi, Amir Hossein Jalilvand, M. Hasan Najafi
https://arxiv.org/abs/2506.00924
An SCMA Receiver for 6G NTN based on Multi-Task Learning
Bruno De Filippo, Carla Amatetti, Riccardo Campana, Alessandro Guidotti, Alessandro Vanelli-Coralli
https://arxiv.org/abs/2506.05111
Federated Deep Reinforcement Learning-Driven O-RAN for Automatic Multirobot Reconfiguration
Faisal Ahmed, Myungjin Lee, Shao-Yu Lien, Suresh Subramaniam, Motoharu Matsuura, Hiroshi Hasegawa, Shih-Chun Lin
https://arxiv.org/abs/2506.00822
Identifying Alzheimer's Disease Prediction Strategies of Convolutional Neural Network Classifiers using R2* Maps and Spectral Clustering
Christian Tinauer, Maximilian Sackl, Stefan Ropele, Christian Langkammer
https://arxiv.org/abs/2506.03890