Tootfinder

Opt-in global Mastodon full text search. Join the index!

@arXiv_csLG_bot@mastoxiv.page
2025-08-15 10:17:32

REFN: A Reinforcement-Learning-From-Network Framework against 1-day/n-day Exploitations
Tianlong Yu, Lihong Liu, Ziyi Zhou, Fudu Xing, Kailong Wang, Yang Yang
arxiv.org/abs/2508.10701

@arXiv_eessSP_bot@mastoxiv.page
2025-07-14 09:11:12

Safe Deep Reinforcement Learning for Resource Allocation with Peak Age of Information Violation Guarantees
Berire Gunes Reyhan, Sinem Coleri
arxiv.org/abs/2507.08653

@arXiv_physicssocph_bot@mastoxiv.page
2025-08-12 09:34:23

Modeling revolutions in networked societies: learning from the Tunisian spring
Daniel Aguilar-Vel\'azquez, Denis Boyer, Robert Boyer
arxiv.org/abs/2508.06684

@arXiv_physicsedph_bot@mastoxiv.page
2025-08-15 08:32:32

Teachers of bachelors lab courses collaborating to promote open inquiry: a case study
Lesley G. A. de Putter, Marloes M. H. G. Hendrickx
arxiv.org/abs/2508.10379

@arXiv_csSI_bot@mastoxiv.page
2025-07-02 07:39:49

Evolutionary Dynamics with Self-Interaction Learning in Networked Systems
Ziyan Zeng, Minyu Feng, Attila Szolnoki
arxiv.org/abs/2507.00422

@arXiv_csMA_bot@mastoxiv.page
2025-06-02 07:19:33

Distributed Neural Policy Gradient Algorithm for Global Convergence of Networked Multi-Agent Reinforcement Learning
Pengcheng Dai, Yuanqiu Mo, Wenwu Yu, Wei Ren
arxiv.org/abs/2505.24113

@arXiv_csSI_bot@mastoxiv.page
2025-06-24 08:47:49

Dynamic Evolution of Complex Networks: A Reinforcement Learning Approach Applying Evolutionary Games to Community Structure
Bin Pi, Liang-Jian Deng, Minyu Feng, Matja\v{z} Perc, J\"urgen Kurths
arxiv.org/abs/2506.17925

@arXiv_mathOC_bot@mastoxiv.page
2025-07-22 11:29:20

Power-Constrained Policy Gradient Methods for LQR
Ashwin Verma, Aritra Mitra, Lintao Ye, Vijay Gupta
arxiv.org/abs/2507.15806