
2025-08-15 10:17:32
REFN: A Reinforcement-Learning-From-Network Framework against 1-day/n-day Exploitations
Tianlong Yu, Lihong Liu, Ziyi Zhou, Fudu Xing, Kailong Wang, Yang Yang
https://arxiv.org/abs/2508.10701
REFN: A Reinforcement-Learning-From-Network Framework against 1-day/n-day Exploitations
Tianlong Yu, Lihong Liu, Ziyi Zhou, Fudu Xing, Kailong Wang, Yang Yang
https://arxiv.org/abs/2508.10701
Safe Deep Reinforcement Learning for Resource Allocation with Peak Age of Information Violation Guarantees
Berire Gunes Reyhan, Sinem Coleri
https://arxiv.org/abs/2507.08653
Modeling revolutions in networked societies: learning from the Tunisian spring
Daniel Aguilar-Vel\'azquez, Denis Boyer, Robert Boyer
https://arxiv.org/abs/2508.06684 https:/…
Teachers of bachelors lab courses collaborating to promote open inquiry: a case study
Lesley G. A. de Putter, Marloes M. H. G. Hendrickx
https://arxiv.org/abs/2508.10379 https:/…
Evolutionary Dynamics with Self-Interaction Learning in Networked Systems
Ziyan Zeng, Minyu Feng, Attila Szolnoki
https://arxiv.org/abs/2507.00422 https://…
Distributed Neural Policy Gradient Algorithm for Global Convergence of Networked Multi-Agent Reinforcement Learning
Pengcheng Dai, Yuanqiu Mo, Wenwu Yu, Wei Ren
https://arxiv.org/abs/2505.24113
Dynamic Evolution of Complex Networks: A Reinforcement Learning Approach Applying Evolutionary Games to Community Structure
Bin Pi, Liang-Jian Deng, Minyu Feng, Matja\v{z} Perc, J\"urgen Kurths
https://arxiv.org/abs/2506.17925
Power-Constrained Policy Gradient Methods for LQR
Ashwin Verma, Aritra Mitra, Lintao Ye, Vijay Gupta
https://arxiv.org/abs/2507.15806 https://