Manipulate-to-Navigate: Reinforcement Learning with Visual Affordances and Manipulability Priors
Yuying Zhang, Joni Pajarinen
https://arxiv.org/abs/2508.13151 https://
Joint Scheduling and Multiflow Maximization in Wireless Networks
Yanxiao Liu, Shenghao Yang, Cheuk Ting Li
https://arxiv.org/abs/2509.14582 https://arxiv.o…
FSF announces Librephone project https://www.fsf.org/news/librephone-project
"The Free Software Foundation announced its project to bring mobile phone freedom to users. "Librephone" is an initiative to reverse-engineer obstacles preventing mobile phone freedom until its goal is…
"Dazu kommt, dass kein Autofahrer weiß, wo die Tempo-30-Zone endet"
Na doch, steht direkt drunter. Als Autofahrender wird man doch wohl 150 Meter abschätzen können. Notfalls muss man zur Sicherheit eben etwas länger 30 km/h fahren.
https://www.
Real-Time Obstacle Avoidance for a Mobile Robot Using CNN-Based Sensor Fusion
Lamiaa H. Zain, Raafat E. Shalaby
https://arxiv.org/abs/2509.08095 https://ar…
Crosslisted article(s) found for cs.AI. https://arxiv.org/list/cs.AI/new
[2/5]:
- Real-Time Obstacle Avoidance for a Mobile Robot Using CNN-Based Sensor Fusion
Lamiaa H. Zain, Raafat E. Shalaby
Learning Social Navigation from Positive and Negative Demonstrations and Rule-Based Specifications
Chanwoo Kim, Jihwan Yoon, Hyeonseong Kim, Taemoon Jeong, Changwoo Yoo, Seungbeen Lee, Soohwan Byeon, Hoon Chung, Matthew Pan, Jean Oh, Kyungjae Lee, Sungjoon Choi
https://arxiv.org/abs/2510.12215
Point Cloud-Based Control Barrier Functions for Model Predictive Control in Safety-Critical Navigation of Autonomous Mobile Robots
Faduo Liang, Yunfeng Yang, Shi-Lu Dai
https://arxiv.org/abs/2510.02885
A Step-by-step Guide on Nonlinear Model Predictive Control for Safe Mobile Robot Navigation
Dennis Benders, Laura Ferranti, Johannes K\"ohler
https://arxiv.org/abs/2507.17856