
2025-06-10 08:42:02
Constraining Nuclear Mass Models Using r-process Observables with Multi-objective Optimization
Mengke Li, Matthew Mumpower, Nicole Vassh, William Samuel Porter, Rebecca Surman
https://arxiv.org/abs/2506.06464
Constraining Nuclear Mass Models Using r-process Observables with Multi-objective Optimization
Mengke Li, Matthew Mumpower, Nicole Vassh, William Samuel Porter, Rebecca Surman
https://arxiv.org/abs/2506.06464
This https://arxiv.org/abs/2312.10290 has been replaced.
link: https://scholar.google.com/scholar?q=a
A First Runtime Analysis of the PAES-25: An Enhanced Variant of the Pareto Archived Evolution Strategy
Andre Opris
https://arxiv.org/abs/2507.03666 https:/…
ROBBO: An Efficient Method for Pareto Front Estimation with Guaranteed Accuracy
Roberto Boffadossi, Marco Leonesio, Lorenzo Fagiano
https://arxiv.org/abs/2506.18004
Reduced Order Data-driven Twin Models for Nonlinear PDEs by Randomized Koopman Orthogonal Decomposition and Explainable Deep Learning
D. A. Bistrian
https://arxiv.org/abs/2508.03325
Worst-Case Complexity of High-Order Algorithms for Pareto-Front Reconstruction
Andrea Cristofari, Marianna De Santis, Stefano Lucidi, Giampaolo Liuzzi
https://arxiv.org/abs/2506.11929