Tootfinder

Opt-in global Mastodon full text search. Join the index!

@arXiv_csLO_bot@mastoxiv.page
2025-09-17 08:33:10

{\L}ukasiewicz Logic with Actions for Neural Networks training
Ioana Leu\c{s}tean (University of Bucharest), Bogdan Macovei (University of Bucharest)
arxiv.org/abs/2509.13020

@arXiv_csDC_bot@mastoxiv.page
2025-08-12 10:15:23

An Experimental Exploration of In-Memory Computing for Multi-Layer Perceptrons
Pedro Carrinho, Hamid Moghadaspour, Oscar Ferraz, Jo\~ao Dinis Ferreira, Yann Falevoz, Vitor Silva, Gabriel Falcao
arxiv.org/abs/2508.07317

@arXiv_csLG_bot@mastoxiv.page
2025-08-12 12:08:33

N-BEATS-MOE: N-BEATS with a Mixture-of-Experts Layer for Heterogeneous Time Series Forecasting
Ricardo Matos, Luis Roque, Vitor Cerqueira
arxiv.org/abs/2508.07490

@arXiv_statML_bot@mastoxiv.page
2025-06-25 08:50:10

Rare dense solutions clusters in asymmetric binary perceptrons -- local entropy via fully lifted RDT
Mihailo Stojnic
arxiv.org/abs/2506.19276

@arXiv_csCV_bot@mastoxiv.page
2025-07-03 10:30:00

evMLP: An Efficient Event-Driven MLP Architecture for Vision
Zhentan Zheng
arxiv.org/abs/2507.01927 arxiv.org/pdf/250…

@arXiv_csLG_bot@mastoxiv.page
2025-09-10 10:31:21

SBS: Enhancing Parameter-Efficiency of Neural Representations for Neural Networks via Spectral Bias Suppression
Qihu Xie, Yuan Li, Yi Kang
arxiv.org/abs/2509.07373

@arXiv_quantph_bot@mastoxiv.page
2025-06-30 09:54:50

QuKAN: A Quantum Circuit Born Machine approach to Quantum Kolmogorov Arnold Networks
Yannick Werner, Akash Malemath, Mengxi Liu, Vitor Fortes Rey, Nikolaos Palaiodimopoulos, Paul Lukowicz, Maximilian Kiefer-Emmanouilidis
arxiv.org/abs/2506.22340

@arXiv_csLG_bot@mastoxiv.page
2025-07-14 09:13:22

Physics-Informed Neural Networks with Hard Nonlinear Equality and Inequality Constraints
Ashfaq Iftakher, Rahul Golder, M. M. Faruque Hasan
arxiv.org/abs/2507.08124 arxiv.org/pdf/2507.08124 arxiv.org/html/2507.08124
arXiv:2507.08124v1 Announce Type: new
Abstract: Traditional physics-informed neural networks (PINNs) do not guarantee strict constraint satisfaction. This is problematic in engineering systems where minor violations of governing laws can significantly degrade the reliability and consistency of model predictions. In this work, we develop KKT-Hardnet, a PINN architecture that enforces both linear and nonlinear equality and inequality constraints up to machine precision. It leverages a projection onto the feasible region through solving Karush-Kuhn-Tucker (KKT) conditions of a distance minimization problem. Furthermore, we reformulate the nonlinear KKT conditions using log-exponential transformation to construct a general sparse system with only linear and exponential terms, thereby making the projection differentiable. We apply KKT-Hardnet on both test problems and a real-world chemical process simulation. Compared to multilayer perceptrons and PINNs, KKT-Hardnet achieves higher accuracy and strict constraint satisfaction. This approach allows the integration of domain knowledge into machine learning towards reliable hybrid modeling of complex systems.
toXiv_bot_toot

@arXiv_mathNA_bot@mastoxiv.page
2025-08-26 09:25:26

Physics-Informed Kolmogorov-Arnold Networks for multi-material elasticity problems in electronic packaging
Yanpeng Gong, Yida He, Yue Mei, Xiaoying Zhuang, Fei Qin, Timon Rabczuk
arxiv.org/abs/2508.16999

@arXiv_physicsoptics_bot@mastoxiv.page
2025-08-28 08:35:11

Fourier Feature Networks for High-Fidelity Prediction of Perturbed Optical Fields
Joshua R. Jandrell, Mitchell A. Cox
arxiv.org/abs/2508.19751

@arXiv_mathST_bot@mastoxiv.page
2025-07-29 16:13:38

Replaced article(s) found for math.ST. arxiv.org/list/math.ST/new
[1/1]:
- Symmetric Perceptrons, Number Partitioning and Lattices
Neekon Vafa, Vinod Vaikuntanathan

@arXiv_physicscompph_bot@mastoxiv.page
2025-07-24 08:53:49

From Atoms to Dynamics: Learning the Committor Without Collective Variables
Sergio Contreras Arredondo, Chenyu Tang, Radu A. Talmazan, Alberto Meg\'ias, Cheng Giuseppe Chen, Christophe Chipot
arxiv.org/abs/2507.17700

@arXiv_csLG_bot@mastoxiv.page
2025-08-01 08:47:11

Scientific Machine Learning with Kolmogorov-Arnold Networks
Salah A. Faroughi, Farinaz Mostajeran, Amin Hamed Mashhadzadeh, Shirko Faroughi
arxiv.org/abs/2507.22959

@arXiv_csLG_bot@mastoxiv.page
2025-08-21 10:08:50

Beyond ReLU: Chebyshev-DQN for Enhanced Deep Q-Networks
Saman Yazdannik, Morteza Tayefi, Shamim Sanisales
arxiv.org/abs/2508.14536 arxiv.or…