2025-10-14 10:10:48
torchsom: The Reference PyTorch Library for Self-Organizing Maps
Louis Berthier, Ahmed Shokry, Maxime Moreaud, Guillaume Ramelet, Eric Moulines
https://arxiv.org/abs/2510.11147 …
torchsom: The Reference PyTorch Library for Self-Organizing Maps
Louis Berthier, Ahmed Shokry, Maxime Moreaud, Guillaume Ramelet, Eric Moulines
https://arxiv.org/abs/2510.11147 …
Tensor Logic: The Language of AI
Pedro Domingos
https://arxiv.org/abs/2510.12269 https://arxiv.org/pdf/2510.12269…
TorchCor: High-Performance Cardiac Electrophysiology Simulations with the Finite Element Method on GPUs
Bei Zhou, Maximilian Balmus, Cesare Corrado, Ludovica Cicci, Shuang Qian, Steven A. Niederer
https://arxiv.org/abs/2510.12011
JND-Guided Light-Weight Neural Pre-Filter for Perceptual Image Coding
Chenlong He, Zijing Dong, Min Li, Zhijian Hao, Leilei Huang, Xiaoyang Zeng, Yibo Fan
https://arxiv.org/abs/2510.10648
Constraint-Guided Unit Test Generation for Machine Learning Libraries
Lukas Krodinger, Altin Hajdari, Stephan Lukasczyk, Gordon Fraser
https://arxiv.org/abs/2510.09108 https://
Soumith Chintala, who co-created the PyTorch ML framework at Meta and left the company this month, has joined Mira Murati's Thinking Machines Lab (Pranav Dixit/Business Insider)
https://www.businessinsider.com/meta-soumith-chinta…
GraphMend: Code Transformations for Fixing Graph Breaks in PyTorch 2
Savini Kashmira, Jayanaka Dantanarayana, Thamirawaran Sathiyalogeswaran, Yichao Yuan, Nishil Talati, Krisztian Flautner, Lingjia Tang, Jason Mars
https://arxiv.org/abs/2509.16248
Comparative Analysis of YOLOv5, Faster R-CNN, SSD, and RetinaNet for Motorbike Detection in Kigali Autonomous Driving Context
Ngeyen Yinkfu, Sunday Nwovu, Jonathan Kayizzi, Angelique Uwamahoro
https://arxiv.org/abs/2510.04912
humancompatible.train: Implementing Optimization Algorithms for Stochastically-Constrained Stochastic Optimization Problems
Andrii Kliachkin, Jana Lep\v{s}ov\'a, Gilles Bareilles, Jakub Mare\v{c}ek
https://arxiv.org/abs/2509.21254
CorPipe at CRAC 2025: Evaluating Multilingual Encoders for Multilingual Coreference Resolution
Milan Straka
https://arxiv.org/abs/2509.17858 https://arxiv.…
RecIS: Sparse to Dense, A Unified Training Framework for Recommendation Models
Hua Zong, Qingtao Zeng, Zhengxiong Zhou, Zhihua Han, Zhensong Yan, Mingjie Liu, Hechen Sun, Jiawei Liu, Yiwen Hu, Qi Wang, YiHan Xian, Wenjie Guo, Houyuan Xiang, Zhiyuan Zeng, Xiangrong Sheng, Bencheng Yan, Nan Hu, Yuheng Huang, Jinqing Lian, Ziru Xu, Yan Zhang, Ju Huang, Siran Yang, Huimin Yi, Jiamang Wang, Pengjie Wang, Han Zhu, Jian Wu, Dan Ou, Jian Xu, Haihong Tang, Yuning Jiang, Bo Zheng, Lin Qu
MinatoLoader: Accelerating Machine Learning Training Through Efficient Data Preprocessing
Rahma Nouaji, Stella Bitchebe, Ricardo Macedo, Oana Balmau
https://arxiv.org/abs/2509.10712
The Syntax and Semantics of einsum
Maurice Wenig, Paul G. Rump, Mark Blacher, Joachim Giesen
https://arxiv.org/abs/2509.20020 https://arxiv.org/pdf/2509.20…
Exploring the Relationship between Brain Hemisphere States and Frequency Bands through Deep Learning Optimization Techniques
Robiul Islam, Dmitry I. Ignatov, Karl Kaberg, Roman Nabatchikov
https://arxiv.org/abs/2509.14078
Evaluating the Effectiveness of Coverage-Guided Fuzzing for Testing Deep Learning Library APIs
Feiran Qin, M. M. Abid Naziri, Hengyu Ai, Saikat Dutta, Marcelo d'Amorim
https://arxiv.org/abs/2509.14626