Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@stf@chaos.social
2025-11-26 17:06:26

by accident i stumbled on this review by the #NSA on Bruce Schneiers "Applied Crypto" book from long ago.

9. BOOK REVIEW: APPLIED CRYPTOGRAPHY [censored] Reviewer

Applied Cryptography, for those who don't read the internet news, is a
book written by Bruce Schneier last year. According to the jacket,
Schneier is a data security expert with a master's degree in computer
science. According to his followers, he is a hero who has finally
brought together the loose threads of cryptography for the general
public to understand. Schneier has gathered academic research, internet
gossip, and everything he co…
Issue 1 TALES OF THE KRYPT Page 14 of 16
oc ID: 6823780

Playing loose with the facts is a serious problem with Schneier. For
example in discussing a small-exponent attack on RSA, he says "an
attack by Michael Wiener will recover e when e is up to one quarter the
size of n." Actually, Wiener's attack recovers the secret exponent d
when e has less than one quarter as many bits as n, which is a quite
different statement. Or: "The quadratic sieve is the fastest known .
algorithm for factoring numb…
@tinoeberl@mastodon.online
2025-11-02 21:22:57

Mit dem neuen #Solarthermiepark Au setzt #Tübingen ein starkes Zeichen für die #Wärmewende.
Auf 23.200 Quadratmetern erzeugt die Anlage jährlich rund 6 Millionen kWh

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 11:47:12

Crosslisted article(s) found for math.OC. arxiv.org/list/math.OC/new
[1/1]:
- Optimal control of Volterra integral diffusions and application to contract theory
Dylan Possama\"i, Mehdi Talbi
arxiv.org/abs/2511.09701 mastoxiv.page/@arXiv_mathPR_bo
- Generalized infinite dimensional Alpha-Procrustes based geometries
Salvish Goomanee, Andi Han, Pratik Jawanpuria, Bamdev Mishra
arxiv.org/abs/2511.09801 mastoxiv.page/@arXiv_statML_bo
- Sample Complexity of Quadratically Regularized Optimal Transport
Alberto Gonz\'alez-Sanz, Eustasio del Barrio, Marcel Nutz
arxiv.org/abs/2511.09807 mastoxiv.page/@arXiv_mathST_bo
- On the Convergence of Overparameterized Problems: Inherent Properties of the Compositional Struct...
Arthur Castello Branco de Oliveira, Dhruv Jatkar, Eduardo Sontag
arxiv.org/abs/2511.09810 mastoxiv.page/@arXiv_csLG_bot/
- Implicit Multiple Tensor Decomposition
Kunjing Yang, Libin Zheng, Minru Bai
arxiv.org/abs/2511.09916 mastoxiv.page/@arXiv_mathNA_bo
- Theoretical Analysis of Resource-Induced Phase Transitions in Estimation Strategies
Takehiro Tottori, Tetsuya J. Kobayashi
arxiv.org/abs/2511.10184 mastoxiv.page/@arXiv_physicsbi
- Zeroes and Extrema of Functions via Random Measures
Athanasios Christou Micheas
arxiv.org/abs/2511.10293 mastoxiv.page/@arXiv_statME_bo
- Operator Models for Continuous-Time Offline Reinforcement Learning
Nicolas Hoischen, Petar Bevanda, Max Beier, Stefan Sosnowski, Boris Houska, Sandra Hirche
arxiv.org/abs/2511.10383 mastoxiv.page/@arXiv_statML_bo
- On topological properties of closed attractors
Wouter Jongeneel
arxiv.org/abs/2511.10429 mastoxiv.page/@arXiv_mathDS_bo
- Learning parameter-dependent shear viscosity from data, with application to sea and land ice
Gonzalo G. de Diego, Georg Stadler
arxiv.org/abs/2511.10452 mastoxiv.page/@arXiv_mathNA_bo
- Formal Verification of Control Lyapunov-Barrier Functions for Safe Stabilization with Bounded Con...
Jun Liu
arxiv.org/abs/2511.10510 mastoxiv.page/@arXiv_eessSY_bo
- Direction-of-Arrival and Noise Covariance Matrix joint estimation for beamforming
Vitor Gelsleichter Probst Curtarelli
arxiv.org/abs/2511.10639 mastoxiv.page/@arXiv_eessAS_bo
toXiv_bot_toot

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 10:10:20

Global Solutions to Non-Convex Functional Constrained Problems with Hidden Convexity
Ilyas Fatkhullin, Niao He, Guanghui Lan, Florian Wolf
arxiv.org/abs/2511.10626 arxiv.org/pdf/2511.10626 arxiv.org/html/2511.10626
arXiv:2511.10626v1 Announce Type: new
Abstract: Constrained non-convex optimization is fundamentally challenging, as global solutions are generally intractable and constraint qualifications may not hold. However, in many applications, including safe policy optimization in control and reinforcement learning, such problems possess hidden convexity, meaning they can be reformulated as convex programs via a nonlinear invertible transformation. Typically such transformations are implicit or unknown, making the direct link with the convex program impossible. On the other hand, (sub-)gradients with respect to the original variables are often accessible or can be easily estimated, which motivates algorithms that operate directly in the original (non-convex) problem space using standard (sub-)gradient oracles. In this work, we develop the first algorithms to provably solve such non-convex problems to global minima. First, using a modified inexact proximal point method, we establish global last-iterate convergence guarantees with $\widetilde{\mathcal{O}}(\varepsilon^{-3})$ oracle complexity in non-smooth setting. For smooth problems, we propose a new bundle-level type method based on linearly constrained quadratic subproblems, improving the oracle complexity to $\widetilde{\mathcal{O}}(\varepsilon^{-1})$. Surprisingly, despite non-convexity, our methodology does not require any constraint qualifications, can handle hidden convex equality constraints, and achieves complexities matching those for solving unconstrained hidden convex optimization.
toXiv_bot_toot

@@arXiv_physicsatomph_bot@mastoxiv.page@mastoxiv.page
2026-01-06 14:20:02

Crosslisted article(s) found for physics.atom-ph. arxiv.org/list/physics.atom-ph
[1/1]:
- A quadratic-scaling algorithm with guaranteed convergence for quantum coupled-channel calculations
Hubert J. J\'o\'zwiak, Md Muktadir Rahman, Timur V. Tscherbul