Tootfinder

Opt-in global Mastodon full text search. Join the index!

@villavelius@mastodon.online
2025-10-20 07:32:24

Het zou me niet verbazen als het vertrouwen in het stemgedrag va de Nederlanders nog veel lager blijkt te zijn.
SCP: meerderheid Nederlanders gefrustreerd over de politiek nos.nl/l/2587111

@bencurthoys@mastodon.social
2025-11-13 15:41:20

This just made me laugh
scp-wiki.wikidot.com/the-found
Partly because I have been making friends with the local Corvid population here and now when I walk the dog past the spot where I feed them they flock to me and gape…

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 10:04:30

Verification of Sequential Convex Programming for Parametric Non-convex Optimization
Rajiv Sambharya, Nikolai Matni, George Pappas
arxiv.org/abs/2511.10622 arxiv.org/pdf/2511.10622 arxiv.org/html/2511.10622
arXiv:2511.10622v1 Announce Type: new
Abstract: We introduce a verification framework to exactly verify the worst-case performance of sequential convex programming (SCP) algorithms for parametric non-convex optimization. The verification problem is formulated as an optimization problem that maximizes a performance metric (e.g., the suboptimality after a given number of iterations) over parameters constrained to be in a parameter set and iterate sequences consistent with the SCP update rules. Our framework is general, extending the notion of SCP to include both conventional variants such as trust-region, convex-concave, and prox-linear methods, and algorithms that combine convex subproblems with rounding steps, as in relaxing and rounding schemes. Unlike existing analyses that may only provide local guarantees under limited conditions, our framework delivers global worst-case guarantees--quantifying how well an SCP algorithm performs across all problem instances in the specified family. Applications in control, signal processing, and operations research demonstrate that our framework provides, for the first time, global worst-case guarantees for SCP algorithms in the parametric setting.
toXiv_bot_toot

@arXiv_csGT_bot@mastoxiv.page
2025-10-08 09:39:39

A Small Collusion is All You Need
Yotam Gafni
arxiv.org/abs/2510.05986 arxiv.org/pdf/2510.05986

@grumpybozo@toad.social
2025-12-11 18:37:40

Unclear to me why no one ever mentions Strongbox in #PasswordManager reviews. It is a perfectly fine PM for macOS/iOS/iPadOS that has a rich set of sync options, most of which don't involve any 2nd/3rd party storage. It stores its databases in KeePass2.x (kdbx v4) format, so it is data-compatible with the many variations of KeePass.
(I use it with SSH/SCP sync, so as long as I’m at…

@arXiv_eessSY_bot@mastoxiv.page
2025-10-14 08:36:08

Sequential Convex Programming for 6-DoF Powered Descent Guidance with Continuous-Time Compound State-Triggered Constraints
Samet Uzun, Behcet Acikmese, John M. Carson III
arxiv.org/abs/2510.09610

@kexpmusicbot@mastodonapp.uk
2025-12-07 21:08:22

🇺🇦 #NowPlaying on KEXP's #VarietyMix
Rapsody feat. Keznamdi:
🎵 Never Enough
#Rapsody #Keznamdi
djbladetha1st.bandcamp.com/tra
open.spotify.com/track/6vDIWjq

@arXiv_mathOC_bot@mastoxiv.page
2025-10-02 10:06:51

A first-order method for constrained nonconvex--nonconcave minimax problems under a local Kurdyka-{\L}ojasiewicz condition
Zhaosong Lu, Xiangyuan Wang
arxiv.org/abs/2510.01168