Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@arXiv_mathNA_bot@mastoxiv.page
2025-09-15 08:05:21

The high-order Hermite discrete correction function method for surface-driven electromagnetic problems
Yann-Meing Law
arxiv.org/abs/2509.09857

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:58:00

Measuring dissimilarity between convex cones by means of max-min angles
Welington de Oliveira, Valentina Sessa, David Sossa
arxiv.org/abs/2511.10483 arxiv.org/pdf/2511.10483 arxiv.org/html/2511.10483
arXiv:2511.10483v1 Announce Type: new
Abstract: This work introduces a novel dissimilarity measure between two convex cones, based on the max-min angle between them. We demonstrate that this measure is closely related to the Pompeiu-Hausdorff distance, a well-established metric for comparing compact sets. Furthermore, we examine cone configurations where the measure admits simplified or analytic forms. For the specific case of polyhedral cones, a nonconvex cutting-plane method is deployed to compute, at least approximately, the measure between them. Our approach builds on a tailored version of Kelley's cutting-plane algorithm, which involves solving a challenging master program per iteration. When this master program is solved locally, our method yields an angle that satisfies certain necessary optimality conditions of the underlying nonconvex optimization problem yielding the dissimilarity measure between the cones. As an application of the proposed mathematical and algorithmic framework, we address the image-set classification task under limited data conditions, a task that falls within the scope of the \emph{Few-Shot Learning} paradigm. In this context, image sets belonging to the same class are modeled as polyhedral cones, and our dissimilarity measure proves useful for understanding whether two image sets belong to the same class.
toXiv_bot_toot

@arXiv_physicsfludyn_bot@mastoxiv.page
2025-10-14 10:07:18

A novel spatial distribution method for wind farm parameterizations based on the Gaussian function
Bowen Du, Qi Li, Mingwei Ge, Xintao Li, Yongqian Liu
arxiv.org/abs/2510.11392

@arXiv_statME_bot@mastoxiv.page
2025-09-15 09:28:11

Using the rejection sampling for finding tests
Markku Kuismin
arxiv.org/abs/2509.10325 arxiv.org/pdf/2509.10325

@arXiv_mathph_bot@mastoxiv.page
2025-10-14 10:04:28

On linear waves with memory in a Bessel-like medium
A. Giusti, I. Colombaro, A. Mentrelli
arxiv.org/abs/2510.11493 arxiv.org/pdf/2510.11493…

@arXiv_eessSY_bot@mastoxiv.page
2025-10-14 11:11:58

pyspect: An Extensible Toolbox for Automatic Construction of Temporal Logic Trees via Reachability Analysis
Kaj Munhoz Arfvidsson, Loizos Hadjiloizou, Frank J. Jiang, Karl H. Johansson, Jonas M{\aa}rtensson
arxiv.org/abs/2510.11316

@arXiv_csDC_bot@mastoxiv.page
2025-10-14 09:32:58

Fair Kernel-Lock-Free Claim/Release Protocol for Shared Object Access in Cooperatively Scheduled Runtimes
Kevin Chalmers, Jan B{\ae}kgaard Pedersen
arxiv.org/abs/2510.10818

@arXiv_astrophGA_bot@mastoxiv.page
2025-10-14 10:35:08

Dark gaps and resonances in barred galaxies
Taehyun Kim, Dimitri A. Gadotti, Myeong-gu Park, Yun Hee Lee, Francesca Fragkoudi, Minjin Kim, Woong-Tae Kim
arxiv.org/abs/2510.10427

@arXiv_mathOC_bot@mastoxiv.page
2025-10-14 10:37:48

Homogenization-based optimization of wall thickness distribution for TPMS two-fluid heat exchangers
Kaito Ohtani, Hiroki Kawabe, Kentaro Yaji, Kikuo Fujita, Vikrant Aute
arxiv.org/abs/2510.10622

@arXiv_mathNA_bot@mastoxiv.page
2025-09-15 09:27:41

Near-Optimal Recovery Performance of PhaseLift for Phase Retrieval from Coded Diffraction Patterns
Meng Huang, Jinming Wen, Ran Zhang
arxiv.org/abs/2509.10300