Tootfinder

Opt-in global Mastodon full text search. Join the index!

@arXiv_csRO_bot@mastoxiv.page
2025-06-30 09:18:20

Experimental investigation of pose informed reinforcement learning for skid-steered visual navigation
Ameya Salvi, Venkat Krovi
arxiv.org/abs/2506.21732

@arXiv_csCL_bot@mastoxiv.page
2025-07-17 10:14:00

S2WTM: Spherical Sliced-Wasserstein Autoencoder for Topic Modeling
Suman Adhya, Debarshi Kumar Sanyal
arxiv.org/abs/2507.12451

@arXiv_csLG_bot@mastoxiv.page
2025-06-12 09:23:01

A Topic Modeling Analysis of Stigma Dimensions, Social, and Related Behavioral Circumstances in Clinical Notes Among Patients with HIV
Ziyi Chen, Yiyang Liu, Mattia Prosperi, Krishna Vaddiparti, Robert L Cook, Jiang Bian, Yi Guo, Yonghui Wu
arxiv.org/abs/2506.09279

@arXiv_csSI_bot@mastoxiv.page
2025-07-24 09:07:20

Cross-Subreddit Behavior as Open-Source Indicators of Coordinated Influence: A Case Study of r/Sino & r/China
Manon Pilaud, Ian McCulloh
arxiv.org/abs/2507.16857

@arXiv_eessSP_bot@mastoxiv.page
2025-07-25 08:07:22

Metasurface-based Fluid Antennas: from Electromagnetics to Communications Model
Pablo Ram\'irez-Espinosa, Cleof\'as Segura-G\'omez, \'Angel Palomares-Caballero, F. Javier L\'opez-Mart\'inez, David Morales-Jim\'enez
arxiv.org/abs/2507.17982

@arXiv_csCL_bot@mastoxiv.page
2025-07-14 09:57:22

Semantic-Augmented Latent Topic Modeling with LLM-in-the-Loop
Mengze Hong, Chen Jason Zhang, Di Jiang
arxiv.org/abs/2507.08498

@arXiv_csHC_bot@mastoxiv.page
2025-07-22 11:02:10

'A Little Bubble of Friends': An Analysis of LGBTQ Pandemic Experiences Using Reddit Data
Dhruvee Birla, Nazia Akhtar
arxiv.org/abs/2507.15033

@arXiv_csSI_bot@mastoxiv.page
2025-06-23 09:18:30

Unpacking Generative AI in Education: Computational Modeling of Teacher and Student Perspectives in Social Media Discourse
Paulina DeVito, Akhil Vallala, Sean Mcmahon, Yaroslav Hinda, Benjamin Thaw, Hanqi Zhuang, Hari Kalva
arxiv.org/abs/2506.16412

@arXiv_csCY_bot@mastoxiv.page
2025-07-18 08:07:52

Catching Dark Signals in Algorithms: Unveiling Audiovisual and Thematic Markers of Unsafe Content Recommended for Children and Teenagers
Haoning Xue, Brian Nishimine, Martin Hilbert, Drew Cingel, Samantha Vigil, Jane Shawcroft, Arti Thakur, Zubair Shafiq, Jingwen Zhang
arxiv.org/abs/2507.12571

@arXiv_csSE_bot@mastoxiv.page
2025-06-16 10:18:49

Understanding the Issue Types in Open Source Blockchain-based Software Projects with the Transformer-based BERTopic
Md Nahidul Islam Opu, Md Shahidul Islam, Sara Rouhani, Shaiful Chowdhury
arxiv.org/abs/2506.11451

@arXiv_csCL_bot@mastoxiv.page
2025-07-11 10:04:21

DTECT: Dynamic Topic Explorer & Context Tracker
Suman Adhya, Debarshi Kumar Sanyal
arxiv.org/abs/2507.07910 arxiv…

@arXiv_statML_bot@mastoxiv.page
2025-07-10 08:44:31

Distribution-free inference for LightGBM and GLM with Tweedie loss
Alokesh Manna, Aditya Vikram Sett, Dipak K. Dey, Yuwen Gu, Elizabeth D. Schifano, Jichao He
arxiv.org/abs/2507.06921

@arXiv_csIR_bot@mastoxiv.page
2025-07-14 07:40:51

DS@GT at LongEval: Evaluating Temporal Performance in Web Search Systems and Topics with Two-Stage Retrieval
Anthony Miyaguchi, Imran Afrulbasha, Aleksandar Pramov
arxiv.org/abs/2507.08360

@arXiv_condmatmtrlsci_bot@mastoxiv.page
2025-06-10 10:33:12

High heating rate effects in sintering: A phase-field study of La-doped alumina
Marco Seiz, Tomohiro Takaki
arxiv.org/abs/2506.07353

@arXiv_csLG_bot@mastoxiv.page
2025-07-11 10:22:41

Agentic Retrieval of Topics and Insights from Earnings Calls
Anant Gupta, Rajarshi Bhowmik, Geoffrey Gunow
arxiv.org/abs/2507.07906 arxiv.org/pdf/2507.07906 arxiv.org/html/2507.07906
arXiv:2507.07906v1 Announce Type: new
Abstract: Tracking the strategic focus of companies through topics in their earnings calls is a key task in financial analysis. However, as industries evolve, traditional topic modeling techniques struggle to dynamically capture emerging topics and their relationships. In this work, we propose an LLM-agent driven approach to discover and retrieve emerging topics from quarterly earnings calls. We propose an LLM-agent to extract topics from documents, structure them into a hierarchical ontology, and establish relationships between new and existing topics through a topic ontology. We demonstrate the use of extracted topics to infer company-level insights and emerging trends over time. We evaluate our approach by measuring ontology coherence, topic evolution accuracy, and its ability to surface emerging financial trends.
toXiv_bot_toot

@arXiv_statME_bot@mastoxiv.page
2025-06-04 07:50:38

Function-on-function Differential Regression
Tongyu Li, Fang Yao
arxiv.org/abs/2506.02363 arxiv.org/pdf/2506.02363

@arXiv_mathAP_bot@mastoxiv.page
2025-06-03 07:49:19

A mean field game model with non-local spatial interactions and resources accumulation
Daria Ghilli, Fausto Gozzi, Cristiano Ricci, Giovanni Zanco
arxiv.org/abs/2506.01200

@arXiv_csLG_bot@mastoxiv.page
2025-06-03 21:53:50

This arxiv.org/abs/2505.19669 has been replaced.
initial toot: mastoxiv.page/@arXiv_csLG_…