A Comparative Analysis of Statistical and Machine Learning Models for Outlier Detection in Bitcoin Limit Order Books
Ivan Letteri
https://arxiv.org/abs/2507.14960
Learning From the Past with Cascading Eligibility Traces
Tokiniaina Raharison Ralambomihanta, Ivan Anokhin, Roman Pogodin, Samira Ebrahimi Kahou, Jonathan Cornford, Blake Aaron Richards
https://arxiv.org/abs/2506.14598
Detecting and Mitigating Reward Hacking in Reinforcement Learning Systems: A Comprehensive Empirical Study
Ibne Farabi Shihab, Sanjeda Akter, Anuj Sharma
https://arxiv.org/abs/2507.05619
Machine Learning-Driven Compensation for Non-Ideal Channels in AWG-Based FBG Interrogator
Ivan A. Kazakov, Iana V. Kulichenko, Egor E. Kovalev, Angelina A. Treskova, Daria D. Barma, Kirill M. Malakhov, Arkady V. Shipulin
https://arxiv.org/abs/2506.13575
Constructing targeted minimum loss/maximum likelihood estimators: a simple illustration to build intuition
Rachael K. Ross, Lina M. Montoya, Dana E. Goin, Ivan Diaz, Audrey Renson
https://arxiv.org/abs/2507.11680
SemanticST: Spatially Informed Semantic Graph Learning for1 Clustering, Integration, and Scalable Analysis of Spatial2 Transcriptomics
Roxana Zahedi, Ahmadreza Argha, Nona Farbehi, Ivan Bakhshayeshi, Youqiong Ye, Nigel H. Lovell, Hamid Alinejad-Rokny
https://arxiv.org/abs/2506.11491
Leveraging machine learning features for linear optical interferometer control
Sergei S. Kuzmin, Ivan V. Dyakonov, Stanislav S. Straupe
https://arxiv.org/abs/2505.24032
Self-learning signal classifier for decameter coherent scatter radars
Oleg Berngardt, Ivan Lavygin
https://arxiv.org/abs/2506.10305 https://
This https://arxiv.org/abs/2505.18565 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csLG_…