Comparative analysis of machine learning techniques for feature selection and classification of Fast Radio Bursts
Ailton J. B. J\'unior, J\'eferson A. S. Fortunato, Leonardo J. Silvestre, Thonimar V. Alencar, Wiliam S. Hip\'olito-Ricaldi
https://arxiv.org/abs/2506.18854
Conditional diffusion models for guided anomaly detection in brain images using fluid-driven anomaly randomization
Ana Lawry Aguila, Peirong Liu, Oula Puonti, Juan Eugenio Iglesias
https://arxiv.org/abs/2506.10233
Line shapes in time- and angle-resolved photoemission spectroscopy explored by machine learning
Tami C. Meyer, Gesa-R. Siemann, Paulina Majchrzak, Thomas Seyller, Jennifer Rigden, Yu Zhang, Emma Springate, Charlotte Sanders, Philip Hofmann
https://arxiv.org/abs/2506.02137
COSMOS-Web: Estimating Physical Parameters of Galaxies Using Self-Organizing Maps
Fatemeh Abedini, Ghassem Gozaliasl, Akram Hasani Zonoozi, Atousa Kalantari, Maarit Korpi-Lagg, Olivier Ilbert, Hollis B. Akins, Natalie Allen, Rafael C. Arango-Toro, Caitlin M. Casey, Nicole E. Drakos, Andreas L. Faisst, Carter Flayhart, Maximilien Franco, Santosh Harish, Hossein Hatamnia, Jeyhan S. Kartaltepe, Ali Ahmad Khostovan, Anton M. Koekemoer, Vasily Kokorev, Rebecca L. Larson, Gavin Leroy, Daizho…

COSMOS-Web: Estimating Physical Parameters of Galaxies Using Self-Organizing Maps
The COSMOS-Web survey, with its unparalleled combination of multiband data -- particularly near-infrared imaging from JWST's NIRCam (F115W, F150W, F277W, and F444W), provides a transformative dataset reaching down to approximately 28th magnitude (F444W) for studying galaxy evolution. In this work, we employ Self-Organizing Maps (SOMs), an unsupervised machine learning method, to estimate key physical parameters of galaxies, redshift, stellar mass, star formation rate (SFR), specific SFR (sSFR),…