Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@kexpmusicbot@mastodonapp.uk
2026-01-31 04:04:02

πŸ‡ΊπŸ‡¦ #NowPlaying on KEXP's #Continent
Tony Allen:
🎡 Progress
#TonyAllen
pankopanko.bandcamp.com/track/
open.spotify.com/track/7gGmZVH

@raiders@darktundra.xyz
2025-12-23 20:29:15

Geno Smith Presser - 12.23.25 youtube.com/watch?v=lvMragID6RY

@ascendor@social.tchncs.de
2026-01-18 21:54:59

"Putin-Ist-ein-lupenreiner-Demokrat" 2.0

@BBC6MusicBot@mastodonapp.uk
2026-01-27 21:38:18

πŸ‡ΊπŸ‡¦ #NowPlaying on #BBC6Music's #RileyAndCoe
London Bones:
🎡 Secret Terry
#LondonBones
londonbones.bandcamp.com/track
open.spotify.com/track/0C8T12N

@arXiv_mathGN_bot@mastoxiv.page
2025-11-13 08:04:49

Concentrated sets and the Hurewicz property
Valentin Haberl, Piotr Szewczak, Lyubomyr Zdomskyy
arxiv.org/abs/2511.09320 arxiv.org/pdf/2511.09320 arxiv.org/html/2511.09320
arXiv:2511.09320v1 Announce Type: new
Abstract: A set of reals $X$ is $\mathfrak{b}$-concentrated if it has cardinality at least $\mathfrak{b}$ and it contains a countable set $D\subseteq X$ such that each closed subset of $X$ disjoint with $D$ has size smaller than $\mathfrak{b}$. We present ZFC results about structures of $\mathfrak{b}$-concentrated sets with the Hurewicz covering property using semifilters. Then we show that assuming that the semifilter trichotomy holds, then each $\mathfrak{b}$-concentrated set is Hurewicz and even productively Hurewicz. We also show that the appearance of Hurewicz $\mathfrak{b}$-concentrated sets under the semifilter trichotomy is somewhat specific and the situation in the Laver model for the consitency of the Borel Conjecture is different.
toXiv_bot_toot

@BBC3MusicBot@mastodonapp.uk
2025-11-20 07:51:08

πŸ‡ΊπŸ‡¦ #NowPlaying on BBCRadio3's #Breakfast
Felix Mendelssohn, Lev Markiz & Amsterdam Sinfonietta:
🎡 String Symphony No 7 in D minor (4th mvt)
#FelixMendelssohn #LevMarkiz #AmsterdamSinfonietta

@kexpmusicbot@mastodonapp.uk
2026-01-13 16:53:49

πŸ‡ΊπŸ‡¦ #NowPlaying on KEXP's #MorningShow
Odonis Odonis:
🎡 The Same
#OdonisOdonis
odonisodonis.bandcamp.com/trac
open.spotify.com/track/1Lwuo4B

@radioeinsmusicbot@mastodonapp.uk
2026-01-17 05:27:08

πŸ‡ΊπŸ‡¦ Auf #radioeins lΓ€uft...
Angela Aux & Sam Irl:
🎡 Killer Kid (Dub-Version)
#NowPlaying #AngelaAux #SamIrl
midnightembassy.bandcamp.com/t
open.spotify.com/track/386lbNr

@kexpmusicbot@mastodonapp.uk
2026-01-03 03:23:38

πŸ‡ΊπŸ‡¦ #NowPlaying on KEXP's #Continent
Tony Allen:
🎡 Progress
#TonyAllen
pankopanko.bandcamp.com/track/
open.spotify.com/track/7gGmZVH

@BBC6MusicBot@mastodonapp.uk
2026-01-20 21:06:33

πŸ‡ΊπŸ‡¦ #NowPlaying on #BBC6Music's #RileyAndCoe
London Bones:
🎡 Secret Terry
#LondonBones
londonbones.bandcamp.com/track
open.spotify.com/track/0C8T12N