🤦🏻 Golf lesson: Study shows political polarization hurts performance at work
#politics
from my link log —
Python anti-patterns.
https://docs.quantifiedcode.com/python-anti-patterns/
saved 2019-07-24 https://do…
Greg Olson Quantifies the Raiders' Loss of Brock Bowers https://www.si.com/nfl/raiders/onsi/las-vegas-greg-olson-quantifies-loss-of-brock-bowers
What @… said, I basically want to yell at everyone and everything within 1000m of somebody saying “KPI” in basically every business everywhere.
quantification ≠ objectivity
quantification ≠ empiricism
quantification ≠ methodological soundness
quantification = mapping non-numerical things to numbers, and that’s it. The rest is up to you. https://infosec.exchange/@saraislet/115544576545095979
Replaced article(s) found for physics.optics. https://arxiv.org/list/physics.optics/new
[1/1]:
- LLM4Laser: Large Language Models Automate the Design of Lasers
Renjie Li, Ceyao Zhang, Sixuan Mao, Xiyuan Zhou, Feng Yin, Sergios Theodoridis, Zhaoyu Zhang
https://arxiv.org/abs/2104.12145
- Room-temperature valley-selective emission in Si-MoSe2 heterostructures enabled by high-quality-f...
Feng Pan, et al.
https://arxiv.org/abs/2409.09806 https://mastoxiv.page/@arXiv_physicsoptics_bot/113152185040115763
- 1T'-MoTe$_2$ as an integrated saturable absorber for photonic machine learning
Maria Carolina Volpato, Henrique G. Rosa, Tom Reep, Pierre-Louis de Assis, Newton Cesario Frateschi
https://arxiv.org/abs/2507.16140 https://mastoxiv.page/@arXiv_physicsoptics_bot/114901571498004090
- NeOTF: Guidestar-free neural representation for broadband dynamic imaging through scattering
Yunong Sun, Fei Xia
https://arxiv.org/abs/2507.22328 https://mastoxiv.page/@arXiv_physicsoptics_bot/114947052118796753
- Structured Random Models for Phase Retrieval with Optical Diffusers
Zhiyuan Hu, Fakhriyya Mammadova, Juli\'an Tachella, Michael Unser, Jonathan Dong
https://arxiv.org/abs/2510.14490 https://mastoxiv.page/@arXiv_physicsoptics_bot/115388901264416806
- Memory Effects in Time-Modulated Radiative Heat Transfer
Riccardo Messina, Philippe Ben-Abdallah
https://arxiv.org/abs/2510.19378 https://mastoxiv.page/@arXiv_physicsoptics_bot/115422659227231796
- Mie-tronics supermodes and symmetry breaking in nonlocal metasurfaces
Thanh Xuan Hoang, Ayan Nussupbekov, Jie Ji, Daniel Leykam, Jaime Gomez Rivas, Yuri Kivshar
https://arxiv.org/abs/2511.03560 https://mastoxiv.page/@arXiv_physicsoptics_bot/115502066008543828
- Integrated soliton microcombs beyond the turnkey limit
Wang, Xu, Wang, Zhu, Luo, Luo, Wang, Ni, Yang, Gong, Xiao, Li, Yang
https://arxiv.org/abs/2511.06909 https://mastoxiv.page/@arXiv_physicsoptics_bot/115530791701071777
- Ising accelerator with a reconfigurable interferometric photonic processor
Rausell-Campo, Al Kayed, P\'erez-L\'ppez, Aadhi, Shastri, Francoy
https://arxiv.org/abs/2511.13284 https://mastoxiv.page/@arXiv_physicsoptics_bot/115570439939074488
- Superradiance in dense atomic samples
I. M. de Ara\'ujo, H. Sanchez, L. F. Alves da Silva, M. H. Y. Moussa
https://arxiv.org/abs/2504.20242 https://mastoxiv.page/@arXiv_quantph_bot/114425762810828336
- Fluctuation-induced Hall-like lateral forces in a chiral-gain environment
Daigo Oue, M\'ario G. Silveirinha
https://arxiv.org/abs/2507.14754 https://mastoxiv.page/@arXiv_condmatmeshall_bot/114896308178114535
- Tensor-network approach to quantum optical state evolution beyond the Fock basis
Nikolay Kapridov, Egor Tiunov, Dmitry Chermoshentsev
https://arxiv.org/abs/2511.15295 https://mastoxiv.page/@arXiv_quantph_bot/115581390666689204
- OmniLens : Blind Lens Aberration Correction via Large LensLib Pre-Training and Latent PSF Repres...
Jiang, Qian, Gao, Sun, Yang, Yi, Li, Yang, Van Gool, Wang
https://arxiv.org/abs/2511.17126 https://mastoxiv.page/@arXiv_eessIV_bot/115603729319581340
toXiv_bot_toot
Crosslisted article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[3/3]:
- Fraud detection in credit card transactions using Quantum-Assisted Restricted Boltzmann Machines
Jo\~ao Marcos Cavalcanti de Albuquerque Neto, Gustavo Castro do Amaral, Guilherme Penello Tempor\~ao
https://arxiv.org/abs/2512.17660 https://mastoxiv.page/@arXiv_quantph_bot/115762703945731580
- Vidarc: Embodied Video Diffusion Model for Closed-loop Control
Feng, Xiang, Mao, Tan, Zhang, Huang, Zheng, Liu, Su, Zhu
https://arxiv.org/abs/2512.17661 https://mastoxiv.page/@arXiv_csRO_bot/115762650859932523
- Imputation Uncertainty in Interpretable Machine Learning Methods
Pegah Golchian, Marvin N. Wright
https://arxiv.org/abs/2512.17689 https://mastoxiv.page/@arXiv_statML_bot/115762577479255577
- Revisiting the Broken Symmetry Phase of Solid Hydrogen: A Neural Network Variational Monte Carlo ...
Shengdu Chai, Chen Lin, Xinyang Dong, Yuqiang Li, Wanli Ouyang, Lei Wang, X. C. Xie
https://arxiv.org/abs/2512.17703 https://mastoxiv.page/@arXiv_condmatstrel_bot/115762481116668454
- Breast Cancer Neoadjuvant Chemotherapy Treatment Response Prediction Using Aligned Longitudinal M...
Rahul Ravi, Ruizhe Li, Tarek Abdelfatah, Stephen Chan, Xin Chen
https://arxiv.org/abs/2512.17759 https://mastoxiv.page/@arXiv_eessIV_bot/115762481771898369
- MedNeXt-v2: Scaling 3D ConvNeXts for Large-Scale Supervised Representation Learning in Medical Im...
Roy, Kirchhoff, Ulrich, Rokuss, Wald, Isensee, Maier-Hein
https://arxiv.org/abs/2512.17774 https://mastoxiv.page/@arXiv_eessIV_bot/115762492258209812
- Domain-Aware Quantum Circuit for QML
Gurinder Singh, Thaddeus Pellegrini, Kenneth M. Merz, Jr
https://arxiv.org/abs/2512.17800 https://mastoxiv.page/@arXiv_quantph_bot/115762723607200478
- Visually Prompted Benchmarks Are Surprisingly Fragile
Feng, Lian, Dunlap, Shu, Wang, Wang, Darrell, Suhr, Kanazawa
https://arxiv.org/abs/2512.17875 https://mastoxiv.page/@arXiv_csCV_bot/115762781936221554
- Learning vertical coordinates via automatic differentiation of a dynamical core
Tim Whittaker, Seth Taylor, Elsa Cardoso-Bihlo, Alejandro Di Luca, Alex Bihlo
https://arxiv.org/abs/2512.17877 https://mastoxiv.page/@arXiv_physicsaoph_bot/115762405092703069
- RadarGen: Automotive Radar Point Cloud Generation from Cameras
Tomer Borreda, Fangqiang Ding, Sanja Fidler, Shengyu Huang, Or Litany
https://arxiv.org/abs/2512.17897 https://mastoxiv.page/@arXiv_csCV_bot/115762783246540528
- Distributionally Robust Imitation Learning: Layered Control Architecture for Certifiable Autonomy
Gahlawat, Aboudonia, Banik, Hovakimyan, Matni, Ames, Zardini, Speranzon
https://arxiv.org/abs/2512.17899 https://mastoxiv.page/@arXiv_eessSY_bot/115762532257741954
- Re-Depth Anything: Test-Time Depth Refinement via Self-Supervised Re-lighting
Ananta R. Bhattarai, Helge Rhodin
https://arxiv.org/abs/2512.17908 https://mastoxiv.page/@arXiv_csCV_bot/115762785868778349
toXiv_bot_toot
Starlink & Co. werden fast alle Bilder künftiger Weltraumteleskope kontaminieren
Die stark wachsende Zahl von Satelliten stört nicht nur erdgebundene Astronomie, sondern auch Weltraumteleskope. Die Folgen wurden jetzt quantifiziert.
What if homeowners could control their own electricity flow and slash energy costs?
Schneider Electric and the National Lab of the Rockies have spent a decade exploring exactly that. They're developing smart panels and using AI to reimagine America's energy future—modeling scenarios for 2050 and quantifying how tech can deliver resilience and affordability.
Daniels was looking at just 10 easily quantifiable body measurements. How many important dimensions of variations are there in a human mind? How hard are they to measure? How likely is it that even one single “average” mind exists on Earth?? The odds are vanishingly small.
[Napkin sketch: assume there are a paltry 20 dimensions of brain variation. (Surely that’s low.) Assume there’s a 1 in 5 change of being completely “normal” in each. (Surely that’s high.) Even that absurd hypothetical gives a 1 in 11,490 chance that a •single• completely average mind exists in a population of 8.3 billion.]
5/