Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@arXiv_mathCO_bot@mastoxiv.page
2025-10-14 11:30:09

Canonical Ramsey: triangles, rectangles and beyond
Yijia Fang, Gennian Ge, Yang Shu, Qian Xu, Zixiang Xu, Dilong Yang
arxiv.org/abs/2510.11638

@NFL@darktundra.xyz
2025-11-08 20:16:37

Commanders owners anticipate possible stadium name discussion Sunday with President Trump nytimes.com/athletic/6789811/2

@arXiv_eessSP_bot@mastoxiv.page
2025-10-06 08:44:29

Integrated Sensing, Communication, and Positioning in Cellular Vehicular Networks
Xin Tong, Zhaoyang Zhang, Yuzhi Yang, Yu Ge, Zhaohui Yang, Henk Wymeersch, M\'erouane Debbah
arxiv.org/abs/2510.02939

@arXiv_csIT_bot@mastoxiv.page
2025-10-08 09:04:29

Medium Access for Multi-Cell ISAC through Scheduling of Radar and Communication Tasks
Jo\~ao Henrique Inacio de Souza, Fabio Saggese, Kun Chen-Hu, Petar Popovski
arxiv.org/abs/2510.05821

@arXiv_mathSG_bot@mastoxiv.page
2025-11-12 08:12:09

Deformation quantisation of exact shifted symplectic structures, with an application to vanishing cycles
J. P. Pridham
arxiv.org/abs/2511.07602 arxiv.org/pdf/2511.07602 arxiv.org/html/2511.07602
arXiv:2511.07602v1 Announce Type: new
Abstract: We extend the author's and CPTVV's correspondence between shifted symplectic and Poisson structures to establish a correspondence between exact shifted symplectic structures and non-degenerate shifted Poisson structures with formal derivation, a concept generalising constructions by De Wilde and Lecomte. Our formulation is sufficiently general to encompass derived algebraic, analytic and $\mathcal{C}^{\infty}$ stacks, as well as Lagrangians and non-commutative generalisations. We also show that non-degenerate shifted Poisson structures with formal derivation carry unique self-dual deformation quantisations in any setting where the latter can be formulated.
One application is that for (not necessarily exact) $0$-shifted symplectic structures in analytic and $\mathcal{C}^{\infty}$ settings, it follows that the author's earlier parametrisations of quantisations are in fact independent of any choice of associator, and generalise Fedosov's parametrisation of quantisations for classical manifolds.
Our main application is to complex $(-1)$-shifted symplectic structures, showing that our unique quantisation of the canonical exact structure, a sheaf of twisted $BD_0$-algebras with derivation, gives rise to BBDJS's perverse sheaf of vanishing cycles, equipped with its monodromy operator.
toXiv_bot_toot

@kurtsh@mastodon.social
2025-11-04 16:42:51

Been doing these demos for a month now & even the most jaded & cynical audience members all ask the same question:
"Um, so when is this coming out & how do I get it?" 😁
#Excel #Copilot #Microsoft

@arXiv_mathRT_bot@mastoxiv.page
2025-10-06 09:19:19

Feit's conjecture, the canonical Brauer induction formula, and Adams operations
Robert Boltje, Gabriel Navarro
arxiv.org/abs/2510.03179

@arXiv_csCL_bot@mastoxiv.page
2025-10-14 13:15:08

Culturally-Aware Conversations: A Framework & Benchmark for LLMs
Shreya Havaldar, Sunny Rai, Young-Min Cho, Lyle Ungar
arxiv.org/abs/2510.11563

@arXiv_eessSP_bot@mastoxiv.page
2025-10-01 10:21:37

Secrecy-Driven Beamforming for Multi-User Integrated Sensing and Communication
Ali Khandan Boroujeni, Hyeon Seok Rou, Ghazal Bagheri, Kuranage Roche Rayan Ranasinghe, Giuseppe Thadeu Freitas de Abreu, Stefan K\"opsell, Rafael F. Schaefer
arxiv.org/abs/2509.26249

@arXiv_eessSP_bot@mastoxiv.page
2025-10-07 08:12:01

Pinching Antenna Systems (PASS) for Cell-Free Communications
Haochen Li
arxiv.org/abs/2510.03628 arxiv.org/pdf/2510.03628