Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[3/5]:
- Look-Ahead Reasoning on Learning Platforms
Haiqing Zhu, Tijana Zrnic, Celestine Mendler-D\"unner
https://arxiv.org/abs/2511.14745 https://mastoxiv.page/@arXiv_csLG_bot/115575981129228810
- Deep Gaussian Process Proximal Policy Optimization
Matthijs van der Lende, Juan Cardenas-Cartagena
https://arxiv.org/abs/2511.18214 https://mastoxiv.page/@arXiv_csLG_bot/115610315210502140
- Spectral Concentration at the Edge of Stability: Information Geometry of Kernel Associative Memory
Akira Tamamori
https://arxiv.org/abs/2511.23083 https://mastoxiv.page/@arXiv_csLG_bot/115644325602130493
- xGR: Efficient Generative Recommendation Serving at Scale
Sun, Liu, Zhang, Wu, Yang, Liang, Li, Ma, Liang, Ren, Zhang, Liu, Zhang, Qian, Yang
https://arxiv.org/abs/2512.11529 https://mastoxiv.page/@arXiv_csLG_bot/115723008170311172
- Credit Risk Estimation with Non-Financial Features: Evidence from a Synthetic Istanbul Dataset
Atalay Denknalbant, Emre Sezdi, Zeki Furkan Kutlu, Polat Goktas
https://arxiv.org/abs/2512.12783 https://mastoxiv.page/@arXiv_csLG_bot/115729287232895097
- The Semantic Illusion: Certified Limits of Embedding-Based Hallucination Detection in RAG Systems
Debu Sinha
https://arxiv.org/abs/2512.15068 https://mastoxiv.page/@arXiv_csLG_bot/115740048142898391
- Towards Reproducibility in Predictive Process Mining: SPICE -- A Deep Learning Library
Stritzel, H\"uhnerbein, Rauch, Zarate, Fleischmann, Buck, Lischka, Frey
https://arxiv.org/abs/2512.16715 https://mastoxiv.page/@arXiv_csLG_bot/115745910810427061
- Differentially private Bayesian tests
Abhisek Chakraborty, Saptati Datta
https://arxiv.org/abs/2401.15502 https://mastoxiv.page/@arXiv_statML_bot/111843467510507382
- SCAFFLSA: Taming Heterogeneity in Federated Linear Stochastic Approximation and TD Learning
Paul Mangold, Sergey Samsonov, Safwan Labbi, Ilya Levin, Reda Alami, Alexey Naumov, Eric Moulines
https://arxiv.org/abs/2402.04114
- Adjusting Model Size in Continual Gaussian Processes: How Big is Big Enough?
Guiomar Pescador-Barrios, Sarah Filippi, Mark van der Wilk
https://arxiv.org/abs/2408.07588 https://mastoxiv.page/@arXiv_statML_bot/112965266196097314
- Non-Perturbative Trivializing Flows for Lattice Gauge Theories
Mathis Gerdes, Pim de Haan, Roberto Bondesan, Miranda C. N. Cheng
https://arxiv.org/abs/2410.13161 https://mastoxiv.page/@arXiv_heplat_bot/113327593338897860
- Dynamic PET Image Prediction Using a Network Combining Reversible and Irreversible Modules
Sun, Zhang, Xia, Sun, Chen, Yang, Liu, Zhu, Liu
https://arxiv.org/abs/2410.22674 https://mastoxiv.page/@arXiv_eessIV_bot/113401026110345647
- Targeted Learning for Variable Importance
Xiaohan Wang, Yunzhe Zhou, Giles Hooker
https://arxiv.org/abs/2411.02221 https://mastoxiv.page/@arXiv_statML_bot/113429912435819479
- Refined Analysis of Federated Averaging and Federated Richardson-Romberg
Paul Mangold, Alain Durmus, Aymeric Dieuleveut, Sergey Samsonov, Eric Moulines
https://arxiv.org/abs/2412.01389 https://mastoxiv.page/@arXiv_statML_bot/113588027268311334
- Embedding-Driven Data Distillation for 360-Degree IQA With Residual-Aware Refinement
Abderrezzaq Sendjasni, Seif-Eddine Benkabou, Mohamed-Chaker Larabi
https://arxiv.org/abs/2412.12667 https://mastoxiv.page/@arXiv_csCV_bot/113672538318570349
- 3D Cell Oversegmentation Correction via Geo-Wasserstein Divergence
Peter Chen, Bryan Chang, Olivia A Creasey, Julie Beth Sneddon, Zev J Gartner, Yining Liu
https://arxiv.org/abs/2502.01890 https://mastoxiv.page/@arXiv_csCV_bot/113949981686723660
- DHP: Discrete Hierarchical Planning for Hierarchical Reinforcement Learning Agents
Shashank Sharma, Janina Hoffmann, Vinay Namboodiri
https://arxiv.org/abs/2502.01956 https://mastoxiv.page/@arXiv_csRO_bot/113949997485625086
- Foundation for unbiased cross-validation of spatio-temporal models for species distribution modeling
Diana Koldasbayeva, Alexey Zaytsev
https://arxiv.org/abs/2502.03480
- GraphCompNet: A Position-Aware Model for Predicting and Compensating Shape Deviations in 3D Printing
Juheon Lee (Rachel), Lei (Rachel), Chen, Juan Carlos Catana, Hui Wang, Jun Zeng
https://arxiv.org/abs/2502.09652 https://mastoxiv.page/@arXiv_csCV_bot/114017924551186136
- LookAhead Tuning: Safer Language Models via Partial Answer Previews
Liu, Wang, Luo, Yuan, Sun, Liang, Zhang, Zhou, Hooi, Deng
https://arxiv.org/abs/2503.19041 https://mastoxiv.page/@arXiv_csCL_bot/114227502448008352
- Constraint-based causal discovery with tiered background knowledge and latent variables in single...
Christine W. Bang, Vanessa Didelez
https://arxiv.org/abs/2503.21526 https://mastoxiv.page/@arXiv_statML_bot/114238919468512990
toXiv_bot_toot
A propósito del apoyo de Frei a Kast.
Créditos para #Malaimagen
🔗 #Humor
India's November 21 labor law has granted legal status to millions of gig workers, but benefits are unclear and access to social security remains elusive (Jagmeet Singh/TechCrunch)
https://techcrunch.com/2025/11/24/indi…
🇺🇦 #NowPlaying on BBCRadio3's #NightTracks
Robert Schumann, Isabelle Faust, Antoine Tamestit, Jean‐Guihen Queyras & Alexander Melnikov:
🎵 Piano Quartet in E flat major, Op. 47: III. Andante cantabile
#RobertSchumann
https://open.spotify.com/track/6a5Nz2fi4LtRTLrBZJej8c
mist: MIST protein interaction database (2020)
The Molecular Interaction Search Tool (MIST) is a comprehensive resource of molecular interactions, assembled from severla primary sources. MIST currently supports several species, including:.
This network has 50 nodes and 41 edges.
Tags: Biological, Protein interactions, Unweighted
🇺🇦 #NowPlaying on KEXP's #VarietyMix
Bill Withers:
🎵 Wintertime
#BillWithers
https://open.spotify.com/track/2mLWmIuU2xLbH5CfFMHhzn
HP plans to build millions of computers in Saudi Arabia by 2030, primarily for export to MENA, as part of the kingdom's plans to boost manufacturing and exports (Matthew Martin/Semafor)
https://www.semafor.com/article/10/24/2025/hp-plans-to-bui…
mist: MIST protein interaction database (2020)
The Molecular Interaction Search Tool (MIST) is a comprehensive resource of molecular interactions, assembled from severla primary sources. MIST currently supports several species, including:.
This network has 27105 nodes and 334495 edges.
Tags: Biological, Protein interactions, Unweighted
Sources: India raises concerns about the misuse of Indian phone numbers on WhatsApp, which banned 9.8M Indian accounts per month on average in 2025 to October (Kiran Rathee/The Economic Times)
https://econom…
mist: MIST protein interaction database (2020)
The Molecular Interaction Search Tool (MIST) is a comprehensive resource of molecular interactions, assembled from severla primary sources. MIST currently supports several species, including:.
This network has 3705 nodes and 15167 edges.
Tags: Biological, Protein interactions, Unweighted