Why AI can't possibly make you more productive; long
#AI and "productivity", some thoughts:
Edit: fixed some typos.
Productivity is a concept that isn't entirely meaningless outside the context of capitalism, but it's a concept that is heavily inflected in a capitalist context. In many uses today it effectively means "how much you can satisfy and/or exceed your boss' expectations." This is not really what it should mean: even in an anarchist utopia, people would care about things like how many shirts they can produce in a week, although in an "I'd like to voluntarily help more people" way rather than an "I need to meet this quota to earn my survival" way. But let's roll with this definition for a second, because it's almost certainly what your boss means when they say "productivity", and understanding that word in a different (even if truer) sense is therefore inherently dangerous.
Accepting "productivity" to mean "satisfying your boss' expectations," I will now claim: the use of generative AI cannot increase your productivity.
Before I dive in, it's imperative to note that the big generative models which most people think of as constituting "AI" today are evil. They are 1: pouring fuel on our burning planet, 2: psychologically strip-mining a class of data laborers who are exploited for their precarity, 3: enclosing, exploiting, and polluting the digital commons, and 4: stealing labor from broad classes of people many of whom are otherwise glad to give that labor away for free provided they get a simple acknowledgement in return. Any of these four "ethical issues" should be enough *alone* to cause everyone to simply not use the technology. These ethical issues are the reason that I do not use generative AI right now, except for in extremely extenuating circumstances. These issues are also convincing for a wide range of people I talk to, from experts to those with no computer science background. So before I launch into a critique of the effectiveness of generative AI, I want to emphasize that such a critique should be entirely unnecessary.
But back to my thesis: generative AI cannot increase your productivity, where "productivity" has been defined as "how much you can satisfy and/or exceed your boss' expectations."
Why? In fact, what the fuck? Every AI booster I've met has claimed the opposite. They've given me personal examples of time saved by using generative AI. Some of them even truly believe this. Sometimes I even believe they saved time without horribly compromising on quality (and often, your boss doesn't care about quality anyways if the lack of quality is hard to measure of doesn't seem likely to impact short-term sales/feedback/revenue). So if generative AI genuinely lets you write more emails in a shorter period of time, or close more tickets, or something else along these lines, how can I say it isn't increasing your ability to meet your boss' expectations?
The problem is simple: your boss' expectations are not a fixed target. Never have been. In virtue of being someone who oversees and pays wages to others under capitalism, your boss' game has always been: pay you less than the worth of your labor, so that they can accumulate profit and thus more capital to remain in charge instead of being forced into working for a wage themselves. Sure, there are layers of management caught in between who aren't fully in this mode, but they are irrelevant to this analysis. It matters not how much you please your manager if your CEO thinks your work is not worth the wages you are being paid. And using AI actively lowers the value of your work relative to your wages.
Why do I say that? It's actually true in several ways. The most obvious: using generative AI lowers the quality of your work, because the work it produces is shot through with errors, and when your job is reduced to proofreading slop, you are bound to tire a bit, relax your diligence, and let some mistakes through. More than you would have if you are actually doing and taking pride in the work. Examples are innumerable and frequent, from journalists to lawyers to programmers, and we laugh at them "haha how stupid to not check whether the books the AI reviewed for you actually existed!" but on a deeper level if we're honest we know we'd eventually make the same mistake ourselves (bonus game: spot the swipe-typing typos I missed in this post; I'm sure there will be some).
But using generative AI also lowers the value of your work in another much more frightening way: in this era of hype, it demonstrates to your boss that you could be replaced by AI. The more you use it, and no matter how much you can see that your human skills are really necessary to correct its mistakes, the more it appears to your boss that they should hire the AI instead of you. Or perhaps retain 10% of the people in roles like yours to manage the AI doing the other 90% of the work. Paradoxically, the *more* you get done in terms of raw output using generative AI, the more it looks to your boss as if there's an opportunity to get enough work done with even fewer expensive humans. Of course, the decision to fire you and lean more heavily into AI isn't really a good one for long-term profits and success, but the modern boss did not get where they are by considering long-term profits. By using AI, you are merely demonstrating your redundancy, and the more you get done with it, the more redundant you seem.
In fact, there's even a third dimension to this: by using generative AI, you're also providing its purveyors with invaluable training data that allows them to make it better at replacing you. It's generally quite shitty right now, but the more use it gets by competent & clever people, the better it can become at the tasks those specific people use it for. Using the currently-popular algorithm family, there are limits to this; I'm not saying it will eventually transcend the mediocrity it's entwined with. But it can absolutely go from underwhelmingly mediocre to almost-reasonably mediocre with the right training data, and data from prompting sessions is both rarer and more useful than the base datasets it's built on.
For all of these reasons, using generative AI in your job is a mistake that will likely lead to your future unemployment. To reiterate, you should already not be using it because it is evil and causes specific and inexcusable harms, but in case like so many you just don't care about those harms, I've just explained to you why for entirely selfish reasons you should not use it.
If you're in a position where your boss is forcing you to use it, my condolences. I suggest leaning into its failures instead of trying to get the most out of it, and as much as possible, showing your boss very clearly how it wastes your time and makes things slower. Also, point out the dangers of legal liability for its mistakes, and make sure your boss is aware of the degree to which any of your AI-eager coworkers are producing low-quality work that harms organizational goals.
Also, if you've read this far and aren't yet of an anarchist mindset, I encourage you to think about the implications of firing 75% of (at least the white-collar) workforce in order to make more profit while fueling the climate crisis and in most cases also propping up dictatorial figureheads in government. When *either* the AI bubble bursts *or* if the techbros get to live out the beginnings of their worker-replacement fantasies, there are going to be an unimaginable number of economically desperate people living in increasingly expensive times. I'm the kind of optimist who thinks that the resulting social crucible, though perhaps through terrible violence, will lead to deep social changes that effectively unseat from power the ultra-rich that continue to drag us all down this destructive path, and I think its worth some thinking now about what you might want the succeeding stable social configuration to look like so you can advocate towards that during points of malleability.
As others have said more eloquently, generative AI *should* be a technology that makes human lives on average easier, and it would be were it developed & controlled by humanists. The only reason that it's not, is that it's developed and controlled by terrible greedy people who use their unfairly hoarded wealth to immiserate the rest of us in order to maintain their dominance. In the long run, for our very survival, we need to depose them, and I look forward to what the term "generative AI" will mean after that finally happens.
The Trump administration on Thursday said it will restrict waivers that have allowed states to keep kids enrolled in Medicaid or the Children’s Health Insurance Program beyond the 12-month period of continuous coverage required under federal law.
The Centers for Medicare and Medicaid Services (CMS), led by Mehmet Oz, announced the move on Thursday, saying that it has informed states of a “clear shift away from policies that extend beyond statutory limits,”
specifically restricting…
“How to avoid that your post about AI helps the hype”
https://hidde.blog/ai-hype/
Largely agree. I’m careful about the words I use on when I talk / post about it. I avoid terms that anthropomorphize, imply agency, reasoning, etc. I ask people to clarify *which* technology when they say “AI” (…
For the love of God subtitle folks, if you're making subs you don't actually have to add every font known to humanity. You can just add the ones that you're using in the ASS/SSA file. More specifically, you don't have to add 150 fonts totaling 141MB when you're only using 10-20 across the entire subtitle file.
If removing the unneeded fonts reduces the overall size of the videos by 1.1GB across 12 episodes then you're doing it wrong.
"We think of generating source code from a prompt as an AI-powered feature of modern IDEs, but the general problem has a rich history in research efforts and domain-specific programming systems." Join William Benton at this year's Berlin Buzzwords to hear him talk about the history of program synthesis, its relationship to the history of AI, and the lessons we can learn from it today.
Learn more:
Really good clear explanation from @…, laying out various problems and risks with trying to implement "age verification" online.
"Firstly, in order to prove your age you’re being asked to hand over some fairly important personal details. ... Usually the company you’re handing these details to is a third party, often one you will never have heard of before. ...
"The data that is being collected for age verification purposes is extremely tempting to hackers ... and at the moment there is no specific regulation outlining the security standards that these companies should meet ...
"Let’s say all the current age verification providers are incredibly robust, though. ... The question still remains... should you be sharing this information with random websites anyway?
"... once you’ve trained the population of an entire country to routinely hand over their credit card details in order to access content, you have given them an incredibly bad habit that it’s going to be tough to break. ... You don’t just prove your age once, after all, you potentially have to do it dozens of times, to access a bunch of different websites. Everything from BlueSky to PornHub to Spotify and even maybe Wikipedia. It becomes a weekly or perhaps monthly occurrence. Just as individual users don’t tend to read every website’s terms and conditions, it’s unlikely they’re all going to do due diligence checks on every provider who asks for ID, especially once they’ve become used to just handing that data over.
"And although that may not be a problem for _you_, you tech-savvy cleverclogs, if you’ve ever found yourself in the position of unpaid IT support for one of your less knowledgeable friends or relatives, hopefully you can see why it’s a huge problem for the UK population more broadly."
And more!
#AgeVerification #OnlineSafetyAct #OSA
The Agent Behavior: Model, Governance and Challenges in the AI Digital Age
Qiang Zhang, Pei Yan, Yijia Xu, Chuanpo Fu, Yong Fang, Yang Liu
https://arxiv.org/abs/2508.14415 https…
Precise Predictions for Event Shapes in Hadronic Higgs Decays
Elliot Fox, Aude Gehrmann-De Ridder, Thomas Gehrmann, Nigel Glover, Matteo Marcoli, Christian T. Preuss
https://arxiv.org/abs/2508.14282
AI, AGI, and learning efficiency
An addendum to this: I'm someone who would accurately be called "anti-AI" in the modern age, yet I'm also an "AI researcher" in some ways (have only dabbled in neutral nets).
I don't like:
- AI systems that are the product of labor abuses towards the data workers who curate their training corpora.
- AI systems that use inordinate amounts of water and energy during an intensifying climate catastrophe.
- AI systems that are fundamentally untrustworthy and which reinforce and amplify human biases, *especially* when those systems are exposed in a way that invites harms.
- AI systems which are designed to "save" my attention or brain bandwidth but such my doing so cripple my understating of the things I might use them for when I fact that understanding was the thing I was supposed to be using my time to gain, and where the later lack of such understanding will be costly to me.
- AI systems that are designed by and whose hype fattens the purse of people who materially support genocide and the construction of concentration campus (a.k.a. fascists).
In other words, I do not like and except in very extenuating circumstances I will not use ChatGPT, Claude, Copilot, Gemini, etc.
On the other hand, I do like:
- AI research as an endeavor to discover new technologies.
- Generative AI as a research topic using a spectrum of different methods.
- Speculating about non-human intelligences, including artificial ones, and including how to behave ethically towards them.
- Large language models as a specific technique, and autoencoders and other neural networks, assuming they're used responsibly in terms of both resource costs & presentation to end users.
I write this because I think some people (especially folks without CS backgrounds) may feel that opposing AI for all the harms it's causing runs the risk of opposing technological innovation more broadly, and/or may feel there's a risk that they will be "left behind" as everyone else embraces the hype and these technologies inevitability become ubiquitous and essential (I know I feel this way sometimes). Just know that is entirely possible and logically consistent to both oppose many forms of modern AI while also embracing and even being optimistic about AI research, and that while LLMs are currently all the rage, they're not the endpoint of what AI will look like in the future, and their downsides are not inherent in AI development.
Why AI can't possibly make you more productive; long
Addendum: for those in tech specifically, despite what it might seem like, now is an excellent time to be organizing a union in your workplace. In the current social order, it's one of the only & best ways to have any say in the upcoming AI employment debacles, and the solidarity that the organizing process engenders is amazing.