Tootfinder

Opt-in global Mastodon full text search. Join the index!

No exact results. Similar results found.
@morituri@berlin.social
2025-11-13 20:37:34

Ob du’s glaubst oder nicht: Das Eichhörnchen hat dich längst analysiert. 😍
#DietmarSchneider #Fotogalerie #Foto

@arXiv_mathOC_bot@mastoxiv.page
2025-10-14 10:39:38

Second-order Optimization under Heavy-Tailed Noise: Hessian Clipping and Sample Complexity Limits
Abdurakhmon Sadiev, Peter Richt\'arik, Ilyas Fatkhullin
arxiv.org/abs/2510.10690

@morituri@berlin.social
2025-11-12 22:04:45

Luise Königin von Preußen als Südseeschönheit 🌺🙂
Die Büste von Luise im Schlosspark Charlottenburg ist jeden Tag anders gestylt – und das schon seit Jahren!
Ich hatte bisher noch nicht das Glück, den/die Stylist:in zu treffen.
Luise Königin von Preußen (✶ 10. 03. 1776 – † 19. 07.1810)
#Fotogalerie

@dariaphoebe@mindly.social
2025-12-09 14:30:33

Sourdough crepes, egg and bacon, tea and coffee. Probably another quiet night. #TogetherBreakfast photos.app.goo.gl/FtoUCLcBjJAS

@BBC3MusicBot@mastodonapp.uk
2025-12-09 11:23:33

🇺🇦 #NowPlaying on BBCRadio3's #EssentialClassics
Dmitry Shostakovich, Dmitri Maximovich Shostakovich, Maxim Dmitrievich Shostakovich & Orchestre symphonique de Montréal:
🎵 Piano Concerto No 2 in F major, Op 102 (3rd mvt)
#newRelease 🆕 album
open.spotify.com/track/0fhdSLt

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 10:10:20

Global Solutions to Non-Convex Functional Constrained Problems with Hidden Convexity
Ilyas Fatkhullin, Niao He, Guanghui Lan, Florian Wolf
arxiv.org/abs/2511.10626 arxiv.org/pdf/2511.10626 arxiv.org/html/2511.10626
arXiv:2511.10626v1 Announce Type: new
Abstract: Constrained non-convex optimization is fundamentally challenging, as global solutions are generally intractable and constraint qualifications may not hold. However, in many applications, including safe policy optimization in control and reinforcement learning, such problems possess hidden convexity, meaning they can be reformulated as convex programs via a nonlinear invertible transformation. Typically such transformations are implicit or unknown, making the direct link with the convex program impossible. On the other hand, (sub-)gradients with respect to the original variables are often accessible or can be easily estimated, which motivates algorithms that operate directly in the original (non-convex) problem space using standard (sub-)gradient oracles. In this work, we develop the first algorithms to provably solve such non-convex problems to global minima. First, using a modified inexact proximal point method, we establish global last-iterate convergence guarantees with $\widetilde{\mathcal{O}}(\varepsilon^{-3})$ oracle complexity in non-smooth setting. For smooth problems, we propose a new bundle-level type method based on linearly constrained quadratic subproblems, improving the oracle complexity to $\widetilde{\mathcal{O}}(\varepsilon^{-1})$. Surprisingly, despite non-convexity, our methodology does not require any constraint qualifications, can handle hidden convex equality constraints, and achieves complexities matching those for solving unconstrained hidden convex optimization.
toXiv_bot_toot

@morituri@berlin.social
2025-11-13 19:36:47

Graureiher beim Snacken... 2/2
#DietmarSchneider #Fotogalerie #Foto #Photography

@morituri@berlin.social
2025-11-13 19:24:02

Graureiher beim Snacken... 1/2
#DietmarSchneider #Fotogalerie #Foto #Photography

@morituri@berlin.social
2025-11-13 21:35:11

Herrje wie süß! Eine aufgeplusterte Kohlmeise...❤️
#DietmarSchneider #Fotogalerie #Foto #Photography

@morituri@berlin.social
2025-11-13 20:41:14

So süß wie sich das Eichhörnchen mit einem Pfötchen abstützt 😍
#DietmarSchneider #Fotogalerie #Foto #Photography