Tootfinder

Opt-in global Mastodon full text search. Join the index!

@lysander07@sigmoid.social
2025-05-08 08:03:00

Next stop on our NLP timeline (as part of the #ISE2025 lecture) was Terry Winograd's SHRDLU, an early natural language understanding system developed in 1968-70 that could manipulate blocks in a virtual world.
Winograd, T. Procedures as a Representation for Data in a Computer Program for Understanding Natural Language. MIT AI Technical Report 235.

Slide from the Information Service Engineering 2025 lecture, Natural Language Processing 01, A Brief History of NLP, NLP Timeline. The picture depicts a timeline in the middle from top to bottom. There is a marker placed at 1970. Left of the timeline, a screenshot of the SHRDLU system is shown displaying a block world in simple line graphics. On the right side, the following text is displayed: SHRDLU was an early natural language understanding system developed by Terry Winograd in 1968-70 that …
@arXiv_csCL_bot@mastoxiv.page
2025-07-08 14:01:51

An Evaluation of Large Language Models on Text Summarization Tasks Using Prompt Engineering Techniques
Walid Mohamed Aly, Taysir Hassan A. Soliman, Amr Mohamed AbdelAziz
arxiv.org/abs/2507.05123

@arXiv_csCE_bot@mastoxiv.page
2025-07-08 07:34:59

ElliottAgents: A Natural Language-Driven Multi-Agent System for Stock Market Analysis and Prediction
Jaros{\l}aw A. Chudziak, Micha{\l} Wawer
arxiv.org/abs/2507.03435

@arXiv_csCR_bot@mastoxiv.page
2025-07-08 07:48:00

Unveiling Privacy Policy Complexity: An Exploratory Study Using Graph Mining, Machine Learning, and Natural Language Processing
Vijayalakshmi Ramasamy, Seth Barrett, Gokila Dorai, Jessica Zumbach
arxiv.org/abs/2507.02968

@arXiv_csCL_bot@mastoxiv.page
2025-07-08 14:01:41

Verified Language Processing with Hybrid Explainability: A Technical Report
Oliver Robert Fox, Giacomo Bergami, Graham Morgan
arxiv.org/abs/2507.05017

@lysander07@sigmoid.social
2025-05-09 08:41:35

Building on the 90s, statistical n-gram language models, trained on vast text collections, became the backbone of NLP research. They fueled advancements in nearly all NLP techniques of the era, laying the groundwork for today's AI.
F. Jelinek (1997), Statistical Methods for Speech Recognition, MIT Press, Cambridge, MA
#NLP

Slide from Information Service Engineering 2025, LEcture 02, Natural Language PRocessing 01, A Brief History of NLP, NLP timeline. The timeline is located in the middle of the slide from top to bottom. The pointer on the timeline indicates 1990s. On the left, the formula for conditional probability of a word, following a given series of words, is given as a formula. Below, an AI generated portrait of William Shakespeare is displayed with 4 speech buubles, representing artificially generated tex…
@arXiv_csRO_bot@mastoxiv.page
2025-07-09 10:03:12

Is Diversity All You Need for Scalable Robotic Manipulation?
Modi Shi, Li Chen, Jin Chen, Yuxiang Lu, Chiming Liu, Guanghui Ren, Ping Luo, Di Huang, Maoqing Yao, Hongyang Li
arxiv.org/abs/2507.06219

@arXiv_csHC_bot@mastoxiv.page
2025-07-08 11:55:10

HyperSumm-RL: A Dialogue Summarization Framework for Modeling Leadership Perception in Social Robots
Subasish Das
arxiv.org/abs/2507.04160

@arXiv_csIR_bot@mastoxiv.page
2025-07-09 08:33:12

PLACE: Prompt Learning for Attributed Community Search
Shuheng Fang, Kangfei Zhao, Rener Zhang, Yu Rong, Jeffrey Xu Yu
arxiv.org/abs/2507.05311

@arXiv_csCR_bot@mastoxiv.page
2025-06-09 07:46:02

SoK: Are Watermarks in LLMs Ready for Deployment?
Kieu Dang, Phung Lai, NhatHai Phan, Yelong Shen, Ruoming Jin, Abdallah Khreishah, My Thai
arxiv.org/abs/2506.05594

@lysander07@sigmoid.social
2025-05-07 09:59:49

With the advent of ELIZA, Joseph Weizenbaum's first psychotherapist chatbot, NLP took another major step with pattern-based substitution algorithms based on simple regular expressions.
Weizenbaum, Joseph (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Com. of the ACM. 9: 36–45.

Slide from the Information Service Enguneering 2025 lecture slidedeck, lecture 02, Natural language processing 01, Excursion: A Brief History of NLP, NLP timeline
On the right side of the image, a historic text terminal screenshot of a starting ELIZA dialogue is depicted. The timeline in the middle of the picture (from top to bottom) indicates the year 1966. The text left of the timeline says: ELIZA was an early natural language processing computer program created from 1964 to 1966 at the MIT A…
@arXiv_qbiobm_bot@mastoxiv.page
2025-06-09 09:32:43

A cautious user's guide in applying HMMs to physical systems
Max Schweiger, Ayush Saurabh, Steve Press\'e
arxiv.org/abs/2506.05707

@arXiv_csCL_bot@mastoxiv.page
2025-07-08 13:58:51

Dialogue-Based Multi-Dimensional Relationship Extraction from Novels
Yuchen Yan, Hanjie Zhao, Senbin Zhu, Hongde Liu, Zhihong Zhang, Yuxiang Jia
arxiv.org/abs/2507.04852

@arXiv_csCY_bot@mastoxiv.page
2025-07-01 08:03:13

Theories of "Sexuality" in Natural Language Processing Bias Research
Jacob Hobbs
arxiv.org/abs/2506.22481 a…

@arXiv_csCL_bot@mastoxiv.page
2025-07-08 13:56:11

LLMs as Architects and Critics for Multi-Source Opinion Summarization
Anuj Attri, Arnav Attri, Pushpak Bhattacharyya, Suman Banerjee, Amey Patil, Muthusamy Chelliah, Nikesh Garera
arxiv.org/abs/2507.04751

@arXiv_csCR_bot@mastoxiv.page
2025-06-09 08:18:22

PROVSYN: Synthesizing Provenance Graphs for Data Augmentation in Intrusion Detection Systems
Yi Huang, Wajih UI Hassan, Yao Guo, Xiangqun Chen, Ding Li
arxiv.org/abs/2506.06226

@arXiv_csIT_bot@mastoxiv.page
2025-06-06 07:19:11

CSI2Vec: Towards a Universal CSI Feature Representation for Positioning and Channel Charting
Victoria Palhares, Sueda Taner, Christoph Studer
arxiv.org/abs/2506.05237

@arXiv_csAI_bot@mastoxiv.page
2025-06-03 18:09:04

This arxiv.org/abs/2505.16978 has been replaced.
initial toot: mastoxiv.page/@arXiv_csAI_…

@arXiv_csCL_bot@mastoxiv.page
2025-07-08 13:50:11

R1-RE: Cross-Domain Relationship Extraction with RLVR
Runpeng Dai, Tong Zheng, Run Yang, Hongtu Zhu
arxiv.org/abs/2507.04642

@arXiv_astrophIM_bot@mastoxiv.page
2025-06-06 09:46:50

This arxiv.org/abs/2503.18617 has been replaced.
initial toot: mastoxiv.page/@arXiv_…

@arXiv_statML_bot@mastoxiv.page
2025-06-02 10:21:49

This arxiv.org/abs/2412.18407 has been replaced.
initial toot: mastoxiv.page/@arXiv_sta…

@arXiv_csPF_bot@mastoxiv.page
2025-06-03 07:23:13

FlexiSAGA: A Flexible Systolic Array GEMM Accelerator for Sparse and Dense Processing
Mika Markus M\"uller, Konstantin L\"ubeck, Alexander Louis-Ferdinand Jung, Jannik Steinmetz, Oliver Bringmann
arxiv.org/abs/2506.01566

@arXiv_csCL_bot@mastoxiv.page
2025-07-08 13:48:41

Put Teacher in Student's Shoes: Cross-Distillation for Ultra-compact Model Compression Framework
Maolin Wang, Jun Chu, Sicong Xie, Xiaoling Zang, Yao Zhao, Wenliang Zhong, Xiangyu Zhao
arxiv.org/abs/2507.04636

@arXiv_csMM_bot@mastoxiv.page
2025-07-04 08:44:01

VRAgent-R1: Boosting Video Recommendation with MLLM-based Agents via Reinforcement Learning
Siran Chen, Boyu Chen, Chenyun Yu, Yuxiao Luo, Ouyang Yi, Lei Cheng, Chengxiang Zhuo, Zang Li, Yali Wang
arxiv.org/abs/2507.02626

@arXiv_csRO_bot@mastoxiv.page
2025-06-04 13:57:19

This arxiv.org/abs/2412.01753 has been replaced.
initial toot: mastoxiv.page/@arXiv_csRO_…

@arXiv_eessSP_bot@mastoxiv.page
2025-07-04 09:00:31

When Attention is Beneficial for Learning Wireless Resource Allocation Efficiently?
Jia Guo, Chenyang Yang
arxiv.org/abs/2507.02427

@arXiv_csAR_bot@mastoxiv.page
2025-07-02 08:44:10

VEDA: Efficient LLM Generation Through Voting-based KV Cache Eviction and Dataflow-flexible Accelerator
Zhican Wang, Hongxiang Fan, Haroon Waris, Gang Wang, Zhenyu Li, Jianfei Jiang, Yanan Sun, Guanghui He
arxiv.org/abs/2507.00797

@avstockhausen@fedihum.org
2025-06-29 20:35:02

Bookmarked: Talking About Muslims in Middle French: The Potential of Word-to-Vector Models for Studying Semantic Relationships in Medieval Languages – DH Lab #Digital_Humanities

@arXiv_econGN_bot@mastoxiv.page
2025-07-04 07:47:01

Introducing a New Brexit-Related Uncertainty Index: Its Evolution and Economic Consequences
Ismet Gocer, Julia Darby, Serdar Ongan
arxiv.org/abs/2507.02439

@arXiv_csDB_bot@mastoxiv.page
2025-06-02 07:16:48

Searching Clinical Data Using Generative AI
Karan Hanswadkar, Anika Kanchi, Shivani Tripathi, Shi Qiao, Rony Chatterjee, Alekh Jindal
arxiv.org/abs/2505.24090

@arXiv_qbioOT_bot@mastoxiv.page
2025-05-05 07:37:02

Retrieval-Augmented Generation in Biomedicine: A Survey of Technologies, Datasets, and Clinical Applications
Jiawei He, Boya Zhang, Hossein Rouhizadeh, Yingjian Chen, Rui Yang, Jin Lu, Xudong Chen, Nan Liu, Irene Li, Douglas Teodoro
arxiv.org/abs/2505.01146

@arXiv_csHC_bot@mastoxiv.page
2025-06-04 07:23:38

Visualization for interactively adjusting the de-bias effect of word embedding
Arisa Sugino, Takayuki Itoh
arxiv.org/abs/2506.02447

@arXiv_csAI_bot@mastoxiv.page
2025-06-03 07:16:44

Utilizing AI for Aviation Post-Accident Analysis Classification
Aziida Nanyonga, Graham Wild
arxiv.org/abs/2506.00169

@arXiv_qbiobm_bot@mastoxiv.page
2025-07-02 08:21:20

From Sentences to Sequences: Rethinking Languages in Biological System
Ke Liu, Shuanke Shen, Hao Chen
arxiv.org/abs/2507.00953

@arXiv_csCL_bot@mastoxiv.page
2025-06-03 08:20:18

Propaganda and Information Dissemination in the Russo-Ukrainian War: Natural Language Processing of Russian and Western Twitter Narratives
Zaur Gouliev
arxiv.org/abs/2506.01807

@lysander07@sigmoid.social
2025-05-28 05:10:40

Last week, we continued our #ISE2025 lecture on distributional semantics with the introduction of neural language models (NLMs) and compared them to traditional statistical n-gram models.
Benefits of NLMs:
- Capturing Long-Range Dependencies
- Computational and Statistical Tractability
- Improved Generalisation
- Higher Accuracy
@…

The image illustrates the architecture of a Neural Language Model, specifically focusing on Word Vectors II - Neural Language Models. It is part of a presentation on Natural Language Processing, created by the Karlsruhe Institute of Technology (KIT) and FIZ Karlsruhe, as indicated by their logos in the top right corner.

The diagram shows a neural network processing an input word embedding, represented by the phrase "to be or not to." The input is transformed into a d-sized vector representatio…
@arXiv_csCY_bot@mastoxiv.page
2025-06-03 07:21:21

Optimizing Storytelling, Improving Audience Retention, and Reducing Waste in the Entertainment Industry
Andrew Cornfeld, Ashley Miller, Mercedes Mora-Figueroa, Kurt Samuels, Anthony Palomba
arxiv.org/abs/2506.00076

@theodric@social.linux.pizza
2025-05-18 20:59:38

So this guy threw Natural Language Processing at the Voynich Manuscript and concluded that it probably is written in some kind of language and is not just total gibberish. Cool bit of ML research! github.com/brianmg/voynich-nlp

@arXiv_csCR_bot@mastoxiv.page
2025-06-03 17:52:02

This arxiv.org/abs/2505.18889 has been replaced.
initial toot: mastoxiv.page/@arXiv_csCR_…

@arXiv_csFL_bot@mastoxiv.page
2025-05-27 13:29:02

This arxiv.org/abs/2405.07671 has been replaced.
initial toot: mastoxiv.page/@arXiv_csFL_…

@arXiv_csIR_bot@mastoxiv.page
2025-06-30 09:55:40

Towards Fair Rankings: Leveraging LLMs for Gender Bias Detection and Measurement
Maryam Mousavian, Zahra Abbasiantaeb, Mohammad Aliannejadi, Fabio Crestani
arxiv.org/abs/2506.22372

@arXiv_csCL_bot@mastoxiv.page
2025-07-02 09:54:30

Natural language processing for African languages
David Ifeoluwa Adelani
arxiv.org/abs/2507.00297 arxiv.org/pdf/2507.…

@arXiv_econGN_bot@mastoxiv.page
2025-07-04 07:40:01

Seeing Through Green: Text-Based Classification and the Firm's Returns from Green Patents
Lapo Santarlasci, Armando Rungi, Antonio Zinilli
arxiv.org/abs/2507.02287

@arXiv_csSE_bot@mastoxiv.page
2025-06-10 16:48:19

This arxiv.org/abs/2312.17294 has been replaced.
initial toot: mastoxiv.page/@arXiv_csSE_…

@arXiv_csSI_bot@mastoxiv.page
2025-06-24 09:26:39

SocioXplorer: An Interactive Tool for Topic and Network Analysis in Social Data
Sandrine Chausson, Youssef Al Hariri, Walid Magdy, Bj\"orn Ross
arxiv.org/abs/2506.18845

@arXiv_csRO_bot@mastoxiv.page
2025-06-12 08:30:51

Integrating Quantized LLMs into Robotics Systems as Edge AI to Leverage their Natural Language Processing Capabilities
Miguel \'A. Gonz\'alez-Santamarta, Francisco J. Rodr\'iguez-Lera, David Sobr\'in-Hidalgo, \'Angel Manuel Guerrero-Higueras, Vicente Matell\'An-Olivera
arxiv.org/abs/2506.09581

@arXiv_csLG_bot@mastoxiv.page
2025-06-12 09:23:01

A Topic Modeling Analysis of Stigma Dimensions, Social, and Related Behavioral Circumstances in Clinical Notes Among Patients with HIV
Ziyi Chen, Yiyang Liu, Mattia Prosperi, Krishna Vaddiparti, Robert L Cook, Jiang Bian, Yi Guo, Yonghui Wu
arxiv.org/abs/2506.09279

@arXiv_quantph_bot@mastoxiv.page
2025-06-11 10:18:05

Quantum Adiabatic Generation of Human-Like Passwords
Sascha M\"ucke, Raoul Heese, Thore Gerlach, David Biesner, Loong Kuan Lee, Nico Piatkowski
arxiv.org/abs/2506.08917

@arXiv_csCL_bot@mastoxiv.page
2025-06-03 08:20:07

MaXIFE: Multilingual and Cross-lingual Instruction Following Evaluation
Yile Liu, Ziwei Ma, Xiu Jiang, Jinglu Hu, Jing Chang, Liang Li
arxiv.org/abs/2506.01776

@arXiv_physicsgeoph_bot@mastoxiv.page
2025-05-28 07:34:40

SeisCoDE: 3D Seismic Interpretation Foundation Model with Contrastive Self-Distillation Learning
Goodluck Archibong, Ardiansyah Koeshidayatullah, Umair Waheed, Weichang Li, Dicky Harishidayat, Motaz Alfarraj
arxiv.org/abs/2505.20518

@lysander07@sigmoid.social
2025-05-17 07:38:59

In our #ISE2025 lecture last Wednesday, we learned how in n-gram language models via Markov assumption and maximum likelihood estimation we can predict the probability of the occurrence of a word given a specific context (i.e. n words previous in the sequence of words).
#NLP

Slide from the Information Service Engineering 2025 lecture, 03 Natural Language Processing 02, 2.9, Language MOdels:
Title: N-Gram Language Model
The probability of a sequence of words can be computed via contitional probability and the Bayes Rule (including the chain rule for n words). Approximation is performed via Markov assumption (dependency only on the n last words), and the Maximum Likelihood estimation (approximating the probabilities of a sequence of words by counting and normalising …
@arXiv_econGN_bot@mastoxiv.page
2025-06-03 16:34:48

This arxiv.org/abs/2504.15448 has been replaced.
initial toot: mastoxiv.page/@arXiv_eco…

@arXiv_condmatmtrlsci_bot@mastoxiv.page
2025-06-13 10:00:30

FerroAI: A Deep Learning Model for Predicting Phase Diagrams of Ferroelectric Materials
Chenbo Zhang, Xian Chen
arxiv.org/abs/2506.10970

@arXiv_csRO_bot@mastoxiv.page
2025-06-30 09:30:20

LMPVC and Policy Bank: Adaptive voice control for industrial robots with code generating LLMs and reusable Pythonic policies
Ossi Parikka, Roel Pieters
arxiv.org/abs/2506.22028

@arXiv_csCL_bot@mastoxiv.page
2025-06-03 08:20:10

iQUEST: An Iterative Question-Guided Framework for Knowledge Base Question Answering
Shuai Wang, Yinan Yu
arxiv.org/abs/2506.01784

@arXiv_csIR_bot@mastoxiv.page
2025-06-23 09:44:00

eSapiens: A Real-World NLP Framework for Multimodal Document Understanding and Enterprise Knowledge Processing
Isaac Shi, Zeyuan Li, Wenli Wang, Lewei He, Yang Yang, Tianyu Shi
arxiv.org/abs/2506.16768

@arXiv_csLG_bot@mastoxiv.page
2025-06-12 08:14:41

Multivariate Long-term Time Series Forecasting with Fourier Neural Filter
Chenheng Xu, Dan Wu, Yixin Zhu, Ying Nian Wu
arxiv.org/abs/2506.09174

@arXiv_csCL_bot@mastoxiv.page
2025-07-04 09:14:31

Revisiting Active Learning under (Human) Label Variation
Cornelia Gruber, Helen Alber, Bernd Bischl, G\"oran Kauermann, Barbara Plank, Matthias A{\ss}enmacher
arxiv.org/abs/2507.02593

@lysander07@sigmoid.social
2025-05-15 08:11:37

This week, we were discussing the central question Can we "predict" a word? as the basis for statistical language models in our #ISE2025 lecture. Of course, I wasx trying Shakespeare quotes to motivate the (international) students to complement the quotes with "predicted" missing words ;-)
"All the world's a stage, and all the men and women merely...."

Slide from the Information Service Engineering 2025 lecture, Natural Language Processing 03, 2.10 Language Models. The Slide shows a graphical portrait of William Shakespeare (created by midjourney AI) as an ink sketch with yellow accents. The text states "Can we "predict" a word?"
@arXiv_csCR_bot@mastoxiv.page
2025-06-18 09:17:31

Evaluating Large Language Models for Phishing Detection, Self-Consistency, Faithfulness, and Explainability
Shova Kuikel, Aritran Piplai, Palvi Aggarwal
arxiv.org/abs/2506.13746

@arXiv_csIR_bot@mastoxiv.page
2025-06-10 07:52:42

FinBERT2: A Specialized Bidirectional Encoder for Bridging the Gap in Finance-Specific Deployment of Large Language Models
Xuan Xu, Fufang Wen, Beilin Chu, Zhibing Fu, Qinhong Lin, Jiaqi Liu, Binjie Fei, Zhongliang Yang, Linna Zhou, Yu Li
arxiv.org/abs/2506.06335

@arXiv_csCL_bot@mastoxiv.page
2025-06-26 09:08:50

Enhancing Large Language Models through Structured Reasoning
Yubo Dong, Hehe Fan
arxiv.org/abs/2506.20241 arxiv.org/p…

@arXiv_csCR_bot@mastoxiv.page
2025-06-17 11:37:29

Evaluating Large Language Models for Phishing Detection, Self-Consistency, Faithfulness, and Explainability
Shova Kuikel, Aritran Piplai, Palvi Aggarwal
arxiv.org/abs/2506.13746

@arXiv_csHC_bot@mastoxiv.page
2025-06-19 08:21:59

Human-Centred AI in FinTech: Developing a User Experience (UX) Research Point of View (PoV) Playbook
Festus Adedoyin, Huseyin Dogan
arxiv.org/abs/2506.15325

@lysander07@sigmoid.social
2025-05-12 08:39:14

Last leg on our brief history of NLP (so far) is the advent of large language models with GPT-3 in 2020 and the introduction of learning from the prompt (aka few-shot learning).
T. B. Brown et al. (2020). Language models are few-shot learners. NIPS'20

Slide from Information System Engineering 2025 lecture, 02 - Natural Language Processing 01, A brief history of NLP, NLP Timeline.
The NLP timeline is in the middle of the page from top to bottom. The marker is at 2020. On the left side, an original screenshot of GPT-3 is shown, giving advise on how to present a talk about "Symbolic and Subsymbolic AI - An Epic Dilemma?".
The right side holds the following text: 
2020: GPT-3 was released by OpenAI, based on 45TB data crawled from the web. A “da…
@arXiv_csCL_bot@mastoxiv.page
2025-06-17 10:29:45

Language Surgery in Multilingual Large Language Models
Joanito Agili Lopo, Muhammad Ravi Shulthan Habibi, Tack Hwa Wong, Muhammad Ilham Ghozali, Fajri Koto, Genta Indra Winata, Peerat Limkonchotiwat, Alham Fikri Aji, Samuel Cahyawijaya
arxiv.org/abs/2506.12450

@arXiv_csCL_bot@mastoxiv.page
2025-06-30 10:21:20

Evaluating Scoring Bias in LLM-as-a-Judge
Qingquan Li, Shaoyu Dou, Kailai Shao, Chao Chen, Haixiang Hu
arxiv.org/abs/2506.22316

@arXiv_econGN_bot@mastoxiv.page
2025-06-19 08:39:22

Identifying economic narratives in large text corpora -- An integrated approach using Large Language Models
Tobias Schmidt, Kai-Robin Lange, Matthias Reccius, Henrik M\"uller, Michael Roos, Carsten Jentsch
arxiv.org/abs/2506.15041

@arXiv_csCL_bot@mastoxiv.page
2025-06-23 08:25:19

Finance Language Model Evaluation (FLaME)
Glenn Matlin, Mika Okamoto, Huzaifa Pardawala, Yang Yang, Sudheer Chava
arxiv.org/abs/2506.15846

@arXiv_csCR_bot@mastoxiv.page
2025-06-19 08:11:43

LLM vs. SAST: A Technical Analysis on Detecting Coding Bugs of GPT4-Advanced Data Analysis
Madjid G. Tehrani, Eldar Sultanow, William J. Buchanan, Mahkame Houmani, Christel H. Djaha Fodja
arxiv.org/abs/2506.15212

@arXiv_csCR_bot@mastoxiv.page
2025-06-23 09:22:59

Malware Classification Leveraging NLP & Machine Learning for Enhanced Accuracy
Bishwajit Prasad Gond, Rajneekant, Pushkar Kishore, Durga Prasad Mohapatra
arxiv.org/abs/2506.16224

@arXiv_qbioOT_bot@mastoxiv.page
2025-05-13 10:23:34

This arxiv.org/abs/2505.01146 has been replaced.
initial toot: mastoxiv.page/@arXiv_qbi…

@lysander07@sigmoid.social
2025-05-13 16:25:32

Last week, our students learned how to conduct a proper evaluation for an NLP experiment. To this end, we introduced a small textcorpus with sentences about Joseph Fourier, who counts as one of the discoverers of the greenhouse effect, responsible for global warming.

Slide of the Information Service ENgineering lecture 03, Natural Language Processing 02, section 2.6: Evaluation, Precision, and Recall
Headline: Experiment
Let's consider the following text corpus (FOURIERCORPUS):
 1
In 1807, Fourier's work on heat transfer laid the foundation for understanding the greenhouse effect.
2
Joseph Fourier's energy balance analysis showed atmosphere's heat-trapping role.
3
Fourrier's calculations, though rudimentary, suggested that the atmosphere acts as an insulato…
@arXiv_csIR_bot@mastoxiv.page
2025-06-17 09:46:48

INTERPOS: Interaction Rhythm Guided Positional Morphing for Mobile App Recommender Systems
M. H. Maqbool, Moghis Fereidouni, Umar Farooq, A. B. Siddique, Hassan Foroosh
arxiv.org/abs/2506.12661

@arXiv_csCR_bot@mastoxiv.page
2025-06-16 07:29:39

Investigating Vulnerabilities and Defenses Against Audio-Visual Attacks: A Comprehensive Survey Emphasizing Multimodal Models
Jinming Wen, Xinyi Wu, Shuai Zhao, Yanhao Jia, Yuwen Li
arxiv.org/abs/2506.11521

@lysander07@sigmoid.social
2025-05-11 13:16:51

Next stop in our NLP timeline is 2013, the introduction of low dimensional dense word vectors - so-called "word embeddings" - based on distributed semantics, as e.g. word2vec by Mikolov et al. from Google, which enabled representation learning on text.
T. Mikolov et al. (2013). Efficient Estimation of Word Representations in Vector Space.

Slide from the Information Service Engineering 2025 lecture, lecture 02, Natural Language Processing 01, NLP Timeline. The timeline is in the middle of the slide from top to bottom, indicating a marker at 2013. On the left, a diagram is shown, displaying vectors  for "man" and "woman" in a 2D diagram. An arrow leades from the point of "man" to the point of "woman". Above it, there is also the point marked for "king" and the same difference vector is transferred from "man - > woman" to "king - ?…
@arXiv_csCL_bot@mastoxiv.page
2025-06-26 09:06:40

Perspectives in Play: A Multi-Perspective Approach for More Inclusive NLP Systems
Benedetta Muscato, Lucia Passaro, Gizem Gezici, Fosca Giannotti
arxiv.org/abs/2506.20209

@arXiv_qbioOT_bot@mastoxiv.page
2025-06-16 14:57:43

Replaced article(s) found for q-bio.OT. arxiv.org/list/q-bio.OT/new
[1/1]:
English dictionaries, gold and silver standard corpora for biomedical natural language processing...

@arXiv_csCL_bot@mastoxiv.page
2025-06-17 10:08:33

Training-free LLM Merging for Multi-task Learning
Zichuan Fu, Xian Wu, Yejing Wang, Wanyu Wang, Shanshan Ye, Hongzhi Yin, Yi Chang, Yefeng Zheng, Xiangyu Zhao
arxiv.org/abs/2506.12379

@arXiv_csCR_bot@mastoxiv.page
2025-06-12 07:21:21

Adversarial Text Generation with Dynamic Contextual Perturbation
Hetvi Waghela, Jaydip Sen, Sneha Rakshit, Subhasis Dasgupta
arxiv.org/abs/2506.09148