
2025-09-17 09:23:59
Cox Regression on the Plane
Yael Travis-Lumer, Micha Mandel, Rebecca A. Betensky, Malka Gorfine
https://arxiv.org/abs/2509.12473 https://arxiv.org/pdf/2509…
Cox Regression on the Plane
Yael Travis-Lumer, Micha Mandel, Rebecca A. Betensky, Malka Gorfine
https://arxiv.org/abs/2509.12473 https://arxiv.org/pdf/2509…
Foundational theory for optimal decision tree problems. II. Optimal hypersurface decision tree algorithm
Xi He
https://arxiv.org/abs/2509.12057 https://arx…
Scale-Location-Truncated Beta Regression: Expanding Beta Regression to Accommodate 0 and 1
Mingang Kim, Brent A. Kaplan, Mikhail N. Koffarnus, Christopher T. Franck
https://arxiv.org/abs/2509.13167
A High-Level Feature Model to Predict the Encoding Energy of a Hardware Video Encoder
Diwakara Reddy, Christian Herglotz, Andr\'e Kaup
https://arxiv.org/abs/2510.12754 https…
Scalable Variable Selection and Model Averaging for Latent Regression Models Using Approximate Variational Bayes
Gregor Zens, Mark F. J. Steel
https://arxiv.org/abs/2509.11751 h…
A Type 2 Fuzzy Set Approach for Building Linear Linguistic Regression Analysis under Multi Uncertainty
Junzo Watada, Pei-Chun Lin, Bo Wang, Jeng-Shyang Pan, Jose Guadalupe Flores Muniz
https://arxiv.org/abs/2509.10498
Varying Horizon Learning Economic MPC With Unknown Costs of Disturbed Nonlinear Systems
Weiliang Xiong, Defeng He, Haiping Du, Jianbin Mu
https://arxiv.org/abs/2509.11823 https:…
Neural Scaling Laws for Deep Regression
Tilen Cadez, Kyoung-Min Kim
https://arxiv.org/abs/2509.10000 https://arxiv.org/pdf/2509.10000
Bayesian model updating via streamlined Bayesian active learning cubature
Pei-Pei Li, Chao Dang, Crist\'obal H. Acevedo, Marcos A. Valdebenito, Matthias G. R. Faes
https://arxiv.org/abs/2509.11204 …
Least squares-based methods to bias adjustment in scalar-on-function regression model using a functional instrumental variable
Xiwei Chen, Ufuk Beyaztas, Caihong Qin, Heyang Ji, Gilson Honvoh, Roger S. Zoh, Lan Xue, Carmen D. Tekwe
https://arxiv.org/abs/2509.12122
Projection-based multifidelity linear regression for data-scarce applications
Vignesh Sella, Julie Pham, Karen Willcox, Anirban Chaudhuri
https://arxiv.org/abs/2508.08517 https:…
L2-relaxation for Economic Prediction
Zhentao Shi, Yishu Wang
https://arxiv.org/abs/2510.12183 https://arxiv.org/pdf/2510.12183
Finetuning Large Language Model as an Effective Symbolic Regressor
Yingfan Hua, Ruikun Li, Jun Yao, Guohang Zhuang, Shixiang Tang, Bin Liu, Wanli Ouyang, Yan Lu
https://arxiv.org/abs/2508.09897
Varying-Coefficient Fr\'echet Regression
Yanzhao Wang, Jianqiang Zhang, Wangli Xu
https://arxiv.org/abs/2509.11061 https://arxiv.org/pdf/2509.11061
A Framework for Nonstationary Gaussian Processes with Neural Network Parameters
Zachary James, Joseph Guinness
https://arxiv.org/abs/2507.12262 https://
KOO Method-based Consistent Clustering for Group-wise Linear Regression with Graph Structure
M. Ohishi, R. Oda
https://arxiv.org/abs/2509.11103 https://arx…
UPLME: Uncertainty-Aware Probabilistic Language Modelling for Robust Empathy Regression
Md Rakibul Hasan, Md Zakir Hossain, Aneesh Krishna, Shafin Rahman, Tom Gedeon
https://arxiv.org/abs/2508.03520
Learning-based model predictive control with moving horizon state estimation for autonomous racing
Yassine Kebbati, Andreas Rauh, Naima Ait-Oufroukh, Dalil Ichalal, Vincent Vigneron
https://arxiv.org/abs/2510.05366
R2 priors for Grouped Variance Decomposition in High-dimensional Regression
Javier Enrique Aguilar, David Kohns, Aki Vehtari, Paul-Christian B\"urkner
https://arxiv.org/abs/2507.11833
Bayesian Additive Regression Trees for functional ANOVA model
Seokhun Park, Insung Kong, Yongdai Kim
https://arxiv.org/abs/2509.03317 https://arxiv.org/pdf…
Identifying Optimal Regression Models For DEM Simulation Datasets
B. D. Jenkins, A. L. Nicusan, A. Neveu, G. Lumay, F. Francqui, J. P. K. Seville, C. R. K. Windows-Yule
https://arxiv.org/abs/2508.05308
Robust Functional Logistic Regression
Berkay Akturk, Ufuk Beyaztas, Han Lin Shang
https://arxiv.org/abs/2510.12048 https://arxiv.org/pdf/2510.12048
Self-learning QMC: application to the classical Holstein-Spin-Fermion model
Shaozhi Li
https://arxiv.org/abs/2509.05876 https://arxiv.org/pdf/2509.05876
Deducing Closed-Form Expressions for Bright-Solitons in Strongly Magnetized Plasmas with Physics Informed Symbolic Regression (PISR)
Edward Finkelstein
https://arxiv.org/abs/2510.02551
Optimized SVR Framework for Electric Load Forecasting
Nishant Gadde, Yoshua Alexander, Sarvesh Parthasarthy, Arman Allidina
https://arxiv.org/abs/2510.06476 https://
Bayesian wavelet shrinkage for low SNR data based on the Epanechnikov kernel
Fidel Aniano Causil Barrios, Alex Rodrigo dos Santos Sousa
https://arxiv.org/abs/2507.11718
ReCatcher: Towards LLMs Regression Testing for Code Generation
Altaf Allah Abbassi, Leuson Da Silva, Amin Nikanjam, Foutse Khomh
https://arxiv.org/abs/2507.19390 https://…
Panel regression for the GDP of the Central and Eastern European countries using time-varying coefficients
Lesya Kolinets, Vygintas Gontis
https://arxiv.org/abs/2510.04211 https…
Quantum Communication Complexity of L2-Regularized Linear Regression Protocols
Sayaki Matsushita
https://arxiv.org/abs/2508.16141 https://arxiv.org/pdf/250…
Assessing the Influence of Locational Suitability on the Spatial Distribution of Household Wealth in Bernalillo County, NM
Onyedikachi J. Okeke, Uloma E. Nelson, Chukwudi Nwaogu, Olumide O. Oladoyin, Emmanuel Kubuafor, Dennis Baidoo, Titilope Akinyemi, Adedoyin S. Ajeyomi, Rekiya A. Idris, Isaac A. Fabunmi
https://arxiv.org/abs/2510.11048
On function-on-function linear quantile regression
Muge Mutis, Ufuk Beyaztas, Filiz Karaman, Han Lin Shang
https://arxiv.org/abs/2510.10792 https://arxiv.o…
Leveraging Support Vector Regression for Outcome Prediction in Personalized Ultra-fractionated Stereotactic Adaptive Radiotherapy
Yajun Yu, Steve Jiang, Robert Timmerman, Hao Peng
https://arxiv.org/abs/2509.07872
ASP-Assisted Symbolic Regression: Uncovering Hidden Physics in Fluid Mechanics
Theofanis Aravanis, Grigorios Chrimatopoulos, Mohammad Ferdows, Michalis Xenos, Efstratios Em Tzirtzilakis
https://arxiv.org/abs/2507.17777
Identifying Neural Signatures from fMRI using Hybrid Principal Components Regression
Jared Rieck, Julia Wrobel, Joshua L. Gowin, Yue Wang, Martin Paulus, Ryan Peterson
https://arxiv.org/abs/2509.07300 …
Regression Language Models for Code
Yash Akhauri, Xingyou Song, Arissa Wongpanich, Bryan Lewandowski, Mohamed S. Abdelfattah
https://arxiv.org/abs/2509.26476 https://
Artificial Intelligence for Cost-Aware Resource Prediction in Big Data Pipelines
Harshit Goyal
https://arxiv.org/abs/2510.05127 https://arxiv.org/pdf/2510.…
YOLO-Count: Differentiable Object Counting for Text-to-Image Generation
Guanning Zeng, Xiang Zhang, Zirui Wang, Haiyang Xu, Zeyuan Chen, Bingnan Li, Zhuowen Tu
https://arxiv.org/abs/2508.00728
Learning Linear Regression with Low-Rank Tasks in-Context
Kaito Takanami, Takashi Takahashi, Yoshiyuki Kabashima
https://arxiv.org/abs/2510.04548 https://a…
Use multi level models with {parsnip}: http://multilevelmod.tidymodels.org/ #rstats #ML
(Exhaustive) Symbolic Regression and model selection by minimum description length
Harry Desmond
https://arxiv.org/abs/2507.13033 https://
Linear Regression under Missing or Corrupted Coordinates
Ilias Diakonikolas, Jelena Diakonikolas, Daniel M. Kane, Jasper C. H. Lee, Thanasis Pittas
https://arxiv.org/abs/2509.19242
Sparse Convex Quantile Regression: A Generalized Benders Decomposition Approach
Xiaoyu Luo, Chuanhou Gao
https://arxiv.org/abs/2509.01936 https://arxiv.org…
MASt3R-Fusion: Integrating Feed-Forward Visual Model with IMU, GNSS for High-Functionality SLAM
Yuxuan Zhou, Xingxing Li, Shengyu Li, Zhuohao Yan, Chunxi Xia, Shaoquan Feng
https://arxiv.org/abs/2509.20757
Probing redshift-dependent systematics in the Hubble tension: Model-independent $H_0$ constraints from DESI R2
Tonghua Liu, Shuo Cao, Jieci Wang
https://arxiv.org/abs/2509.20898
Zobrist Hash-based Duplicate Detection in Symbolic Regression
Bogdan Burlacu
https://arxiv.org/abs/2508.13859 https://arxiv.org/pdf/2508.13859
An Adaptive Multi Agent Bitcoin Trading System
Aadi Singhi
https://arxiv.org/abs/2510.08068 https://arxiv.org/pdf/2510.08068…
Preventing Model Collapse Under Overparametrization: Optimal Mixing Ratios for Interpolation Learning and Ridge Regression
Anvit Garg, Sohom Bhattacharya, Pragya Sur
https://arxiv.org/abs/2509.22341
Structural Extrapolation in Regression Discontinuity Designs with an Application to School Expenditure Referenda
Austin Feng, Francesco Ruggieri
https://arxiv.org/abs/2508.02658
Automated Constitutive Model Discovery by Pairing Sparse Regression Algorithms with Model Selection Criteria
Jorge-Humberto Urrea-Quintero, David Anton, Laura De Lorenzis, Henning Wessels
https://arxiv.org/abs/2509.16040
Conformal prediction without knowledge of labeled calibration data
Jonas Flechsig, Maximilian Pilz
https://arxiv.org/abs/2509.10321 https://arxiv.org/pdf/2…
Modeling Spatio-Temporal Dynamics of Obesity in Italian Regions Via Bayesian Beta Regression
Luciano Rota, Raffaele Argiento, Michela Cameletti
https://arxiv.org/abs/2508.05719 …
Autoencoder-based non-intrusive model order reduction in continuum mechanics
Jannick Kehls, Ellen Kuhl, Tim Brepols, Kevin Linka, Hagen Holthusen
https://arxiv.org/abs/2509.02237
Sparse Polynomial Regression under Anomalous Data
Roozbeh Abolpour, Mohammad Reza Hesamzadeh, Maryam Dehghani
https://arxiv.org/abs/2508.18199 https://arxi…
A Regression-Based Share Market Prediction Model for Bangladesh
Syeda Tasnim Fabiha, Rubaiyat Jahan Mumu, Farzana Aktar, B M Mainul Hossain
https://arxiv.org/abs/2507.18643 http…
Fisher Information, Training and Bias in Fourier Regression Models
Lorenzo Pastori, Veronika Eyring, Mierk Schwabe
https://arxiv.org/abs/2510.06945 https://
Bayesian symbolic regression: Automated equation discovery from a physicists' perspective
Roger Guimera, Marta Sales-Pardo
https://arxiv.org/abs/2507.19540 https://
Complete Gaussian Splats from a Single Image with Denoising Diffusion Models
Ziwei Liao, Mohamed Sayed, Steven L. Waslander, Sara Vicente, Daniyar Turmukhambetov, Michael Firman
https://arxiv.org/abs/2508.21542
Learning Multi-Index Models with Hyper-Kernel Ridge Regression
Shuo Huang, Hippolyte Labarri\`ere, Ernesto De Vito, Tomaso Poggio, Lorenzo Rosasco
https://arxiv.org/abs/2510.02532
Functional Regression with Nonstationarity and Error Contamination: Application to the Economic Impact of Climate Change
Kyungsik Nam, Won-Ki Seo
https://arxiv.org/abs/2509.08591
CPC-CMS: Cognitive Pairwise Comparison Classification Model Selection Framework for Document-level Sentiment Analysis
Jianfei Li, Kevin Kam Fung Yuen
https://arxiv.org/abs/2507.14022
Uncertainty Quantification for Regression using Proper Scoring Rules
Alexander Fishkov, Kajetan Schweighofer, Mykyta Ielanskyi, Nikita Kotelevskii, Mohsen Guizani, Maxim Panov
https://arxiv.org/abs/2509.26610
Beyond the Oracle Property: Adaptive LASSO in Cointegrating Regressions
Karsten Reichold, Ulrike Schneider
https://arxiv.org/abs/2510.07204 https://arxiv.o…
Adaptive Market Intelligence: A Mixture of Experts Framework for Volatility-Sensitive Stock Forecasting
Diego Vallarino
https://arxiv.org/abs/2508.02686 https://
Total Robustness in Bayesian Nonlinear Regression for Measurement Error Problems under Model Misspecification
Mengqi Chen, Charita Dellaporta, Thomas B. Berrett, Theodoros Damoulas
https://arxiv.org/abs/2510.03131
Probabilistic Pretraining for Neural Regression
Boris N. Oreshkin, Shiv Tavker, Dmitry Efimov
https://arxiv.org/abs/2508.16355 https://arxiv.org/pdf/2508.1…
Uncertainty Quantification for Multi-level Models Using the Survey-Weighted Pseudo-Posterior
Matthew R. Williams, F. Hunter McGuire, Terrance D. Savitsky
https://arxiv.org/abs/2510.09401
Theory of Scaling Laws for In-Context Regression: Depth, Width, Context and Time
Blake Bordelon, Mary I. Letey, Cengiz Pehlevan
https://arxiv.org/abs/2510.01098 https://
Soil Texture Prediction with Bayesian Generalized Additive Models for Spatial Compositional Data
Joaqu\'in Mart\'inez-Minaya, Lore Zumeta-Olaskoaga, Dae-Jin Lee
https://arxiv.org/abs/2508.07708
Generative Flexible Latent Structure Regression (GFLSR) model
Clara Grazian, Qian Jin, Pierre Lafaye De Micheaux
https://arxiv.org/abs/2508.04393 https://a…
L3Cube-MahaSTS: A Marathi Sentence Similarity Dataset and Models
Aishwarya Mirashi, Ananya Joshi, Raviraj Joshi
https://arxiv.org/abs/2508.21569 https://ar…
High-Dimensional Matrix-Variate Diffusion Index Models for Time Series Forecasting
Zhiren Ma, Qian Zhao, Riquan Zhang, Zhaoxing Gao
https://arxiv.org/abs/2508.04259 https://
Semiparametric model averaging for high-dimensional quantile regression with nonignorable nonresponse
Wei Xiong, Dianliang Deng, Dehui Wang
https://arxiv.org/abs/2509.00464 http…
What is in the model? A Comparison of variable selection criteria and model search approaches
Shuangshuang Xu, Marco A. R. Ferreira, Allison N. Tegge
https://arxiv.org/abs/2510.02628
Towards a Certificate of Trust: Task-Aware OOD Detection for Scientific AI
Bogdan Raoni\'c, Siddhartha Mishra, Samuel Lanthaler
https://arxiv.org/abs/2509.25080 https://
Inference in pseudo-observation-based regression using (biased) covariance estimation and naive bootstrapping
Simon Mack, Morten Overgaard, Dennis Dobler
https://arxiv.org/abs/2510.06815
FBMS: An R Package for Flexible Bayesian Model Selection and Model Averaging
Florian Frommlet, Jon Lachmann, Geir Storvik, Aliaksandr Hubin
https://arxiv.org/abs/2509.00753 http…
Fitting sparse high-dimensional varying-coefficient models with Bayesian regression tree ensembles
Soham Ghosh, Saloni Bhogale, Sameer K. Deshpande
https://arxiv.org/abs/2510.08204
FedCVD : Communication-Efficient Federated Learning for Cardiovascular Risk Prediction with Parametric and Non-Parametric Model Optimization
Abdelrhman Gaber, Hassan Abd-Eltawab, John Elgallab, Youssif Abuzied, Dineo Mpanya, Turgay Celik, Swarun Kumar, Tamer ElBatt
https://arxiv.org/abs/2507.22963…
Regression for spherical responses with linear and spherical covariates using a scaled link function
Shogo Kato, Kassel L. Hingee, Janice L. Scealy, Andrew T. A. Wood
https://arxiv.org/abs/2509.06204
Post Hoc Regression Refinement via Pairwise Rankings
Kevin Tirta Wijaya, Michael Sun, Minghao Guo, Hans-Peter Seidel, Wojciech Matusik, Vahid Babaei
https://arxiv.org/abs/2508.16495
A more interpretable regression model for count data with excess of zeros
Gustavo H. A. Pereira, Jeremias Le\~ao, Manoel Santos-Neto, Jianwen Cai
https://arxiv.org/abs/2509.24916
Disentangled Deep Smoothed Bootstrap for Fair Imbalanced Regression
Samuel Stocksieker, Denys pommeret, Arthur Charpentier
https://arxiv.org/abs/2508.13829 https://
Predicting Social Media Engagement from Emotional and Temporal Features
Yunwoo Kim, Junhyuk Hwang
https://arxiv.org/abs/2508.21650 https://arxiv.org/pdf/25…
Posterior Summarization for Variable Selection in Bayesian Tree Ensembles
Shengbin Ye, Meng Li
https://arxiv.org/abs/2509.07121 https://arxiv.org/pdf/2509.…
Sparse Seemingly Unrelated Regression (SSUR) Copula Mixed Models for Multivariate Loss Reserving
Pengfei Cai, Anas Abdallah, Pratheepa Jeganathan
https://arxiv.org/abs/2509.05426
A Compositional Kernel Model for Feature Learning
Feng Ruan, Keli Liu, Michael Jordan
https://arxiv.org/abs/2509.14158 https://arxiv.org/pdf/2509.14158
Repro Samples Method for Model-Free Inference in High-Dimensional Binary Classification
Xiaotian Hou, Peng Wang, Minge Xie, Linjun Zhang
https://arxiv.org/abs/2510.01468 https:/…
Multinomial probit model based on joint quantile regression
Masaaki Okabe, Koki Matsuoka, Jun Tsuchida, Hiroshi Yadohisa
https://arxiv.org/abs/2508.13556 https://
Physics-Informed Spectral Modeling for Hyperspectral Imaging
Zuzanna Gawrysiak, Krzysztof Krawiec
https://arxiv.org/abs/2508.21618 https://arxiv.org/pdf/25…
Stochastic Taylor expansion via Poisson point processes
Weichao Wu, Athanasios C. Micheas
https://arxiv.org/abs/2508.04703 https://arxiv.org/pdf/2508.04703…
Local aggregate multiscale processes: A scalable, machine-learning-compatible spatial model
Daisuke Murakami, Alexis Comber, Takahiro Yoshida, Narumasa Tsutsumida, Chris Brunsdon, Tomoki Nakaya
https://arxiv.org/abs/2510.00968
Inference in a generalized Bradley-Terry model for paired comparisons with covariates and a growing number of subjects
Ting Yan
https://arxiv.org/abs/2507.22472 https://
Some Simplifications for the Expectation-Maximization (EM) Algorithm: The Linear Regression Model Case
Daniel A. Griffith
https://arxiv.org/abs/2509.19461 https://
Swap Regression Methodology for Predicting Relationship with Historical Bivariate Data
Viral Chitlangia, Mosuk Chow, Sharmishtha Mitra
https://arxiv.org/abs/2508.15479 https://
Regression Analysis of Reciprocity in Directed Networks
Rui Feng, Chenlei Leng
https://arxiv.org/abs/2507.21469 https://arxiv.org/pdf/2507.21469
Interpretable Scalar-on-Image Linear Regression Models via the Generalized Dantzig Selector
Sijia Liao, Xiaoxiao Sun, Ning Hao, Hao Helen Zhang
https://arxiv.org/abs/2508.20278 …
Bayesian Variable Selection in Multivariate Regression Under Collinearity in the Design Matrix
Joyee Ghosh, Xun Li
https://arxiv.org/abs/2507.17975 https://
Analyzing health care data using count models: A novel approach to Length of Stay analysis
Peer Bilal Ahmad, Na Elah
https://arxiv.org/abs/2509.02703 https://
Unit-Modified Weibull Distribution and Quantile Regression Model
Jo\~ao In\'acio Scrimini, Cleber Bisognin, Renata Rojas Guerra, F\'abio M. Bayer
https://arxiv.org/abs/2508.17359
Bridging Control Variates and Regression Adjustment in A/B Testing: From Design-Based to Model-Based Frameworks
Yu Zhang, Bokui Wan, Yongli Qin
https://arxiv.org/abs/2509.13944 …