Tootfinder

Opt-in global Mastodon full text search. Join the index!

@x_cli@infosec.exchange
2025-05-20 09:56:04

Ladies and gentlemen and others, this is why I recommend hosting your own forge, like forgejo: mastodon.social/@mcc/114536667
Also, as I recently discovered: Github git implementation is pretty dumb and reports unsolvable conflicts that are automatically solved by…

@arXiv_csSE_bot@mastoxiv.page
2025-08-19 09:31:19

"My productivity is boosted, but ..." Demystifying Users' Perception on AI Coding Assistants
Yunbo Lyu, Zhou Yang, Jieke Shi, Jianming Chang, Yue Liu, David Lo
arxiv.org/abs/2508.12285

@arXiv_csSE_bot@mastoxiv.page
2025-08-19 09:30:20

LinkAnchor: An Autonomous LLM-Based Agent for Issue-to-Commit Link Recovery
Arshia Akhavan, Alireza Hosseinpour, Abbas Heydarnoori, Mehdi Keshani
arxiv.org/abs/2508.12232

@khalidabuhakmeh@mastodon.social
2025-06-12 18:15:52

While technically a correct fix, this #dotnet fix is about to break a lot of deployments. This was just deployed in the latest release of .NET 8 and 9.
github.com/dotnet/aspnetcore/p

@arXiv_csSE_bot@mastoxiv.page
2025-08-18 07:49:00

The Impact of Large Language Models (LLMs) on Code Review Process
Antonio Collante, Samuel Abedu, SayedHassan Khatoonabadi, Ahmad Abdellatif, Ebube Alor, Emad Shihab
arxiv.org/abs/2508.11034

@arXiv_csLG_bot@mastoxiv.page
2025-07-14 08:19:51

Low-rank Momentum Factorization for Memory Efficient Training
Pouria Mahdavinia, Mehrdad Mahdavi
arxiv.org/abs/2507.08091 arxiv.org/pdf/2507.08091 arxiv.org/html/2507.08091
arXiv:2507.08091v1 Announce Type: new
Abstract: Fine-tuning large foundation models presents significant memory challenges due to stateful optimizers like AdamW, often requiring several times more GPU memory than inference. While memory-efficient methods like parameter-efficient fine-tuning (e.g., LoRA) and optimizer state compression exist, recent approaches like GaLore bridge these by using low-rank gradient projections and subspace moment accumulation. However, such methods may struggle with fixed subspaces or computationally costly offline resampling (e.g., requiring full-matrix SVDs). We propose Momentum Factorized SGD (MoFaSGD), which maintains a dynamically updated low-rank SVD representation of the first-order momentum, closely approximating its full-rank counterpart throughout training. This factorization enables a memory-efficient fine-tuning method that adaptively updates the optimization subspace at each iteration. Crucially, MoFaSGD leverages the computed low-rank momentum factors to perform efficient spectrally normalized updates, offering an alternative to subspace moment accumulation. We establish theoretical convergence guarantees for MoFaSGD, proving it achieves an optimal rate for non-convex stochastic optimization under standard assumptions. Empirically, we demonstrate MoFaSGD's effectiveness on large language model alignment benchmarks, achieving a competitive trade-off between memory reduction (comparable to LoRA) and performance compared to state-of-the-art low-rank optimization methods. Our implementation is available at github.com/pmahdavi/MoFaSGD.
toXiv_bot_toot

@arXiv_csSE_bot@mastoxiv.page
2025-06-18 08:44:02

How Does LLM Reasoning Work for Code? A Survey and a Call to Action
Ira Ceka, Saurabh Pujar, Irene Manotas, Gail Kaiser, Baishakhi Ray, Shyam Ramji
arxiv.org/abs/2506.13932

@arXiv_csSE_bot@mastoxiv.page
2025-06-17 10:24:57

Social Media Reactions to Open Source Promotions: AI-Powered GitHub Projects on Hacker News
Prachnachai Meakpaiboonwattana, Warittha Tarntong, Thai Mekratanavorakul, Chaiyong Ragkhitwetsagul, Pattaraporn Sangaroonsilp, Raula Kula, Morakot Choetkiertikul, Kenichi Matsumoto, Thanwadee Sunetnanta
arxiv.org/abs/2506.12643

@arXiv_physicssocph_bot@mastoxiv.page
2025-06-11 09:23:35

Who is using AI to code? Global diffusion and impact of generative AI
Simone Daniotti, Johannes Wachs, Xiangnan Feng, Frank Neffke
arxiv.org/abs/2506.08945

@arXiv_csCR_bot@mastoxiv.page
2025-08-07 08:23:13

ASTRA: Autonomous Spatial-Temporal Red-teaming for AI Software Assistants
Xiangzhe Xu, Guangyu Shen, Zian Su, Siyuan Cheng, Hanxi Guo, Lu Yan, Xuan Chen, Jiasheng Jiang, Xiaolong Jin, Chengpeng Wang, Zhuo Zhang, Xiangyu Zhang
arxiv.org/abs/2508.03936

@arXiv_csCE_bot@mastoxiv.page
2025-07-09 07:42:12

MCNP-GO: A python package for assembling MCNP input files with a systems engineering approach
Alexandre Friou
arxiv.org/abs/2507.05659

@arXiv_csLO_bot@mastoxiv.page
2025-08-04 07:51:41

Building Bigraphs of the real world
Kang Rong Roy Ang
arxiv.org/abs/2508.00003 arxiv.org/pdf/2508.00003

@gedankenstuecke@scholar.social
2025-05-25 03:16:56

I'm not surprised that Gitlab decided to run off a cliff to follow GitHub:
«AI coding bot allows prompt injection with a pull request»
Everyday I'm more grateful for @… and @…!
pivot-to-ai.com/2025/05/24/ai-

@arXiv_csLG_bot@mastoxiv.page
2025-07-09 10:25:02

KnowIt: Deep Time Series Modeling and Interpretation
M. W. Theunissen, R. Rabe, M. H. Davel
arxiv.org/abs/2507.06009

@arXiv_csSE_bot@mastoxiv.page
2025-08-15 08:22:32

On the synchronization between Hugging Face pre-trained language models and their upstream GitHub repository
Ajibode Adekunle, Abdul Ali Bangash, Bram Adams, Ahmed E. Hassan
arxiv.org/abs/2508.10157

@arXiv_csDL_bot@mastoxiv.page
2025-08-05 07:49:30

Rxiv-Maker: An Automated Template Engine for Streamlined Scientific Publications
Bruno M. Saraiva, Guillaume Jaquemet, Ricardo Henriques
arxiv.org/abs/2508.00836

@arXiv_astrophGA_bot@mastoxiv.page
2025-06-04 07:45:33

A GPU Code for Finding Microlensing Critical Curves and Caustics
Luke Weisenbach
arxiv.org/abs/2506.02121 arxiv.org/p…

@arXiv_csSD_bot@mastoxiv.page
2025-05-30 07:22:51

Nosey: Open-source hardware for acoustic nasalance
Maya Dewhurst, Jack Collins, Justin J. H. Lo, Roy Alderton, Sam Kirkham
arxiv.org/abs/2505.23339

@arXiv_csMA_bot@mastoxiv.page
2025-06-03 07:22:03

Sorrel: A simple and flexible framework for multi-agent reinforcement learning
Rebekah A. Gelp\'i, Yibing Ju, Ethan C. Jackson, Yikai Tang, Shon Verch, Claas Voelcker, William A. Cunningham
arxiv.org/abs/2506.00228

@arXiv_csSE_bot@mastoxiv.page
2025-06-16 10:18:49

Understanding the Issue Types in Open Source Blockchain-based Software Projects with the Transformer-based BERTopic
Md Nahidul Islam Opu, Md Shahidul Islam, Sara Rouhani, Shaiful Chowdhury
arxiv.org/abs/2506.11451

@arXiv_csLG_bot@mastoxiv.page
2025-07-11 10:23:21

Prospective Learning in Retrospect
Yuxin Bai, Cecelia Shuai, Ashwin De Silva, Siyu Yu, Pratik Chaudhari, Joshua T. Vogelstein
arxiv.org/abs/2507.07965 arxiv.org/pdf/2507.07965 arxiv.org/html/2507.07965
arXiv:2507.07965v1 Announce Type: new
Abstract: In most real-world applications of artificial intelligence, the distributions of the data and the goals of the learners tend to change over time. The Probably Approximately Correct (PAC) learning framework, which underpins most machine learning algorithms, fails to account for dynamic data distributions and evolving objectives, often resulting in suboptimal performance. Prospective learning is a recently introduced mathematical framework that overcomes some of these limitations. We build on this framework to present preliminary results that improve the algorithm and numerical results, and extend prospective learning to sequential decision-making scenarios, specifically foraging. Code is available at: github.com/neurodata/prolearn2.
toXiv_bot_toot

@gedankenstuecke@scholar.social
2025-05-25 03:16:56

I'm not surprised that Gitlab decided to run off a cliff to follow GitHub:
«AI coding bot allows prompt injection with a pull request»
Everyday I'm more grateful for @… and @…!
pivot-to-ai.com/2025/05/24/ai-

@arXiv_csSE_bot@mastoxiv.page
2025-08-08 08:45:12

LadyBug: A GitHub Bot for UI-Enhanced Bug Localization in Mobile Apps
Junayed Mahmud, James Chen, Terry Achille, Camilo Alvarez-Velez, Darren Dean Bansil, Patrick Ijieh, Samar Karanch, Nadeeshan De Silva, Oscar Chaparro, Andrian Marcus, Kevin Moran
arxiv.org/abs/2508.05085

@arXiv_eessIV_bot@mastoxiv.page
2025-07-21 09:10:20

Divide and Conquer: A Large-Scale Dataset and Model for Left-Right Breast MRI Segmentation
Maximilian Rokuss, Benjamin Hamm, Yannick Kirchhoff, Klaus Maier-Hein
arxiv.org/abs/2507.13830

@arXiv_csSE_bot@mastoxiv.page
2025-06-13 08:25:40

Not One to Rule Them All: Mining Meaningful Code Review Orders From GitHub
Abir Bouraffa, Carolin Brandt, Andy Zaidmann, Walid Maalej
arxiv.org/abs/2506.10654

@arXiv_csLG_bot@mastoxiv.page
2025-06-03 21:34:51

This arxiv.org/abs/2505.01892 has been replaced.
initial toot: mastoxiv.page/@arXiv_csLG_…

@arXiv_csSE_bot@mastoxiv.page
2025-06-13 08:01:30

The Effects of GitHub Copilot on Computing Students' Programming Effectiveness, Efficiency, and Processes in Brownfield Programming Tasks
Md Istiak Hossain Shihab, Christopher Hundhausen, Ahsun Tariq, Summit Haque, Yunhan Qiao, Brian Mulanda
arxiv.org/abs/2506.10051

@arXiv_physicscompph_bot@mastoxiv.page
2025-06-24 08:40:59

XtalOpt Version 14: Variable-Composition Crystal Structure Search for Functional Materials Through Pareto Optimization
Samad Hajinazar, Eva Zurek
arxiv.org/abs/2506.17246

@arXiv_csCR_bot@mastoxiv.page
2025-07-24 09:32:50

An Empirical Study on Virtual Reality Software Security Weaknesses
Yifan Xu, Jinfu Chen, Zhenyu Qi, Huashan Chen, Junyi Wang, Pengfei Hu, Feng Liu, Sen He
arxiv.org/abs/2507.17324

@arXiv_csSE_bot@mastoxiv.page
2025-06-13 08:44:50

SWE-Factory: Your Automated Factory for Issue Resolution Training Data and Evaluation Benchmarks
Lianghong Guo, Yanlin Wang, Caihua Li, Pengyu Yang, Jiachi Chen, Wei Tao, Yingtian Zou, Duyu Tang, Zibin Zheng
arxiv.org/abs/2506.10954

@arXiv_csSE_bot@mastoxiv.page
2025-06-10 16:48:19

This arxiv.org/abs/2312.17294 has been replaced.
initial toot: mastoxiv.page/@arXiv_csSE_…

@arXiv_csSE_bot@mastoxiv.page
2025-08-07 08:55:54

A Human Centric Requirements Engineering Framework for Assessing Github Copilot Output
Soroush Heydari
arxiv.org/abs/2508.03922 arxiv.org/p…

@arXiv_csSE_bot@mastoxiv.page
2025-08-12 07:37:22

Refactoring-Aware Patch Integration Across Structurally Divergent Java Forks
Daniel Ogenrwot, John Businge
arxiv.org/abs/2508.06718 arxiv.o…

@arXiv_csSE_bot@mastoxiv.page
2025-06-12 07:53:01

UTBoost: Rigorous Evaluation of Coding Agents on SWE-Bench
Boxi Yu, Yuxuan Zhu, Pinjia He, Daniel Kang
arxiv.org/abs/2506.09289

@arXiv_csSE_bot@mastoxiv.page
2025-06-11 13:38:21

Replaced article(s) found for cs.SE. arxiv.org/list/cs.SE/new/
[1/1]:
Enhancing Open-Domain Task-Solving Capability of LLMs via Autonomous Tool Integration from GitHub

@arXiv_csSE_bot@mastoxiv.page
2025-08-05 10:03:11

GitHub Marketplace: Driving Automation and Fostering Innovation in Software Development
SK. Golam Saroar, Waseefa Ahmed, Elmira Onagh, Maleknaz Nayebi
arxiv.org/abs/2508.01489

@arXiv_csSE_bot@mastoxiv.page
2025-07-10 08:24:11

Issue Tracking Ecosystems: Context and Best Practices
Lloyd Montgomery
arxiv.org/abs/2507.06704 arxiv.org/pdf/2507.06…

@arXiv_csSE_bot@mastoxiv.page
2025-06-10 07:58:02

Enhancing Software Supply Chain Security Through STRIDE-Based Threat Modelling of CI/CD Pipelines
Sowmiya Dhandapani
arxiv.org/abs/2506.06478

@arXiv_csSE_bot@mastoxiv.page
2025-07-28 08:45:41

Classifying Issues in Open-source GitHub Repositories
Amir Hossain Raaj, Fairuz Nawer Meem, Sadia Afrin Mim
arxiv.org/abs/2507.18982 arxiv.…

@arXiv_csSE_bot@mastoxiv.page
2025-08-07 09:35:54

Large Language Models Versus Static Code Analysis Tools: A Systematic Benchmark for Vulnerability Detection
Damian Gnieciak, Tomasz Szandala
arxiv.org/abs/2508.04448

@arXiv_csSE_bot@mastoxiv.page
2025-06-30 08:46:30

What Makes ChatGPT Effective for Software Issue Resolution? An Empirical Study of Developer-ChatGPT Conversations in GitHub
Ramtin Ehsani, Sakshi Pathak, Esteban Parra, Sonia Haiduc, Preetha Chatterjee
arxiv.org/abs/2506.22390

@arXiv_csSE_bot@mastoxiv.page
2025-07-29 10:26:22

Beyond Binary Moderation: Identifying Fine-Grained Sexist and Misogynistic Behavior on GitHub with Large Language Models
Tanni Dev, Sayma Sultana, Amiangshu Bosu
arxiv.org/abs/2507.20358

@arXiv_csSE_bot@mastoxiv.page
2025-07-25 08:28:12

An Empirical Study of Complexity, Heterogeneity, and Compliance of GitHub Actions Workflows
Edward Abrokwah, Taher A. Ghaleb
arxiv.org/abs/2507.18062

@arXiv_csSE_bot@mastoxiv.page
2025-07-24 08:36:09

Can LLMs Write CI? A Study on Automatic Generation of GitHub Actions Configurations
Taher A. Ghaleb, Dulina Rathnayake
arxiv.org/abs/2507.17165

@arXiv_csSE_bot@mastoxiv.page
2025-07-03 08:32:30

Context-Aware Code Wiring Recommendation with LLM-based Agent
Taiming Wang, Yanjie Jiang, Chunhao Dong, Yuxia Zhang, Hui Liu
arxiv.org/abs/2507.01315

@arXiv_csSE_bot@mastoxiv.page
2025-06-03 07:31:59

Encouraging Students' Responsible Use of GenAI in Software Engineering Education: A Causal Model and Two Institutional Applications
Vahid Garousi, Zafar Jafarov, Aytan Movsumova, Atif Namazov, Huseyn Mirzayev
arxiv.org/abs/2506.00682

@arXiv_csSE_bot@mastoxiv.page
2025-07-02 09:57:00

Echoes of AI: Investigating the Downstream Effects of AI Assistants on Software Maintainability
Markus Borg, Dave Hewett, Nadim Hagatulah, Noric Couderc, Emma S\"oderberg, Donald Graham, Uttam Kini, Dave Farley
arxiv.org/abs/2507.00788

@arXiv_csSE_bot@mastoxiv.page
2025-07-29 09:54:31

From First Use to Final Commit: Studying the Evolution of Multi-CI Service Adoption
Nitika Chopra, Taher A. Ghaleb
arxiv.org/abs/2507.20095

@arXiv_csSE_bot@mastoxiv.page
2025-08-01 08:50:41

Extension Decisions in Open Source Software Ecosystem
Elmira Onagh, Maleknaz Nayebi
arxiv.org/abs/2507.23168 arxiv.org/pdf/2507.23168

@arXiv_csSE_bot@mastoxiv.page
2025-07-01 10:10:43

QLPro: Automated Code Vulnerability Discovery via LLM and Static Code Analysis Integration
Junze Hu, Xiangyu Jin, Yizhe Zeng, Yuling Liu, Yunpeng Li, Dan Du, Kaiyu Xie, Hongsong Zhu
arxiv.org/abs/2506.23644

@arXiv_csSE_bot@mastoxiv.page
2025-07-01 09:38:23

From Release to Adoption: Challenges in Reusing Pre-trained AI Models for Downstream Developers
Peerachai Banyongrakkul, Mansooreh Zahedi, Patanamon Thongtanunam, Christoph Treude, Haoyu Gao
arxiv.org/abs/2506.23234

@arXiv_csSE_bot@mastoxiv.page
2025-07-30 08:38:52

Ethical Classification of Non-Coding Contributions in Open-Source Projects via Large Language Models
Sergio Cobos, Javier Luis C\'anovas Izquierdo
arxiv.org/abs/2507.21583

@arXiv_csSE_bot@mastoxiv.page
2025-07-29 10:26:31

CIgrate: Automating CI Service Migration with Large Language Models
Md Nazmul Hossain, Taher A. Ghaleb
arxiv.org/abs/2507.20402 arxiv.org/p…

@arXiv_csSE_bot@mastoxiv.page
2025-07-28 08:37:01

MemoCoder: Automated Function Synthesis using LLM-Supported Agents
Yiping Jia, Zhen Ming Jiang, Shayan Noei, Ying Zou
arxiv.org/abs/2507.18812

@arXiv_csSE_bot@mastoxiv.page
2025-07-25 07:38:01

How Software Engineers Engage with AI: A Pragmatic Process Model and Decision Framework Grounded in Industry Observations
Vahid Garousi, Zafar Jafarov
arxiv.org/abs/2507.17930

@arXiv_csSE_bot@mastoxiv.page
2025-06-23 08:41:20

Seeing is Fixing: Cross-Modal Reasoning with Multimodal LLMs for Visual Software Issue Fixing
Kai Huang, Jian Zhang, Xiaofei Xie, Chunyang Chen
arxiv.org/abs/2506.16136

@arXiv_csSE_bot@mastoxiv.page
2025-07-23 09:50:32

VulGuard: An Unified Tool for Evaluating Just-In-Time Vulnerability Prediction Models
Duong Nguyen, Manh Tran-Duc, Thanh Le-Cong, Triet Huynh Minh Le, M. Ali Babar, Quyet-Thang Huynh
arxiv.org/abs/2507.16685

@arXiv_csSE_bot@mastoxiv.page
2025-07-22 11:00:30

Toward Inclusive AI-Driven Development: Exploring Gender Differences in Code Generation Tool Interactions
Manaal Basha, Ivan Beschastnikh, Gema Rodriguez-Perez, Cleidson R. B. de Souza
arxiv.org/abs/2507.14770

@arXiv_csSE_bot@mastoxiv.page
2025-07-22 11:13:10

The Rise of AI Teammates in Software Engineering (SE) 3.0: How Autonomous Coding Agents Are Reshaping Software Engineering
Hao Li, Haoxiang Zhang, Ahmed E. Hassan
arxiv.org/abs/2507.15003