Tootfinder

Opt-in global Mastodon full text search. Join the index!

@arXiv_statME_bot@mastoxiv.page
2025-10-14 10:17:08

On function-on-function linear quantile regression
Muge Mutis, Ufuk Beyaztas, Filiz Karaman, Han Lin Shang
arxiv.org/abs/2510.10792 arxiv.o…

@arXiv_csDS_bot@mastoxiv.page
2025-10-14 09:51:48

Information-Computation Tradeoffs for Noiseless Linear Regression with Oblivious Contamination
Ilias Diakonikolas, Chao Gao, Daniel M. Kane, John Lafferty, Ankit Pensia
arxiv.org/abs/2510.10665

@arXiv_statME_bot@mastoxiv.page
2025-10-15 09:28:32

Robust Functional Logistic Regression
Berkay Akturk, Ufuk Beyaztas, Han Lin Shang
arxiv.org/abs/2510.12048 arxiv.org/pdf/2510.12048

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:37:40

Locally Linear Convergence for Nonsmooth Convex Optimization via Coupled Smoothing and Momentum
Reza Rahimi Baghbadorani, Sergio Grammatico, Peyman Mohajerin Esfahani
arxiv.org/abs/2511.10239 arxiv.org/pdf/2511.10239 arxiv.org/html/2511.10239
arXiv:2511.10239v1 Announce Type: new
Abstract: We propose an adaptive accelerated smoothing technique for a nonsmooth convex optimization problem where the smoothing update rule is coupled with the momentum parameter. We also extend the setting to the case where the objective function is the sum of two nonsmooth functions. With regard to convergence rate, we provide the global (optimal) sublinear convergence guarantees of O(1/k), which is known to be provably optimal for the studied class of functions, along with a local linear rate if the nonsmooth term fulfills a so-call locally strong convexity condition. We validate the performance of our algorithm on several problem classes, including regression with the l1-norm (the Lasso problem), sparse semidefinite programming (the MaxCut problem), Nuclear norm minimization with application in model free fault diagnosis, and l_1-regularized model predictive control to showcase the benefits of the coupling. An interesting observation is that although our global convergence result guarantees O(1/k) convergence, we consistently observe a practical transient convergence rate of O(1/k^2), followed by asymptotic linear convergence as anticipated by the theoretical result. This two-phase behavior can also be explained in view of the proposed smoothing rule.
toXiv_bot_toot

@arXiv_physicsgeoph_bot@mastoxiv.page
2025-10-14 15:16:00

Crosslisted article(s) found for physics.geo-ph. arxiv.org/list/physics.geo-ph/
[1/1]:
- Rethinking deep learning: linear regression remains a key benchmark in predicting terrestrial wat...
Nie, Kumar, Chen, Zhao, Skulovich, Yoo, Pflug, Ahmad, Konapala

@arXiv_quantph_bot@mastoxiv.page
2025-09-30 12:57:51

Accelerating Regression Tasks with Quantum Algorithms
Chenghua Liu, Zhengfeng Ji
arxiv.org/abs/2509.24757 arxiv.org/pdf/2509.24757

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:35:50

dHPR: A Distributed Halpern Peaceman--Rachford Method for Non-smooth Distributed Optimization Problems
Zhangcheng Feng, Defeng Sun, Yancheng Yuan, Guojun Zhang
arxiv.org/abs/2511.10069 arxiv.org/pdf/2511.10069 arxiv.org/html/2511.10069
arXiv:2511.10069v1 Announce Type: new
Abstract: This paper introduces the distributed Halpern Peaceman--Rachford (dHPR) method, an efficient algorithm for solving distributed convex composite optimization problems with non-smooth objectives, which achieves a non-ergodic $O(1/k)$ iteration complexity regarding Karush--Kuhn--Tucker residual. By leveraging the symmetric Gauss--Seidel decomposition, the dHPR effectively decouples the linear operators in the objective functions and consensus constraints while maintaining parallelizability and avoiding additional large proximal terms, leading to a decentralized implementation with provably fast convergence. The superior performance of dHPR is demonstrated through comprehensive numerical experiments on distributed LASSO, group LASSO, and $L_1$-regularized logistic regression problems.
toXiv_bot_toot

@arXiv_csLG_bot@mastoxiv.page
2025-09-26 10:30:01

Closed-form $\ell_r$ norm scaling with data for overparameterized linear regression and diagonal linear networks under $\ell_p$ bias
Shuofeng Zhang, Ard Louis
arxiv.org/abs/2509.21181

@arXiv_csCG_bot@mastoxiv.page
2025-10-07 07:39:06

Cellular Learning: Scattered Data Regression in High Dimensions via Voronoi Cells
Shankar Prasad Sastry
arxiv.org/abs/2510.03810 arxiv.org/…

@arXiv_statML_bot@mastoxiv.page
2025-09-23 09:37:40

Risk Comparisons in Linear Regression: Implicit Regularization Dominates Explicit Regularization
Jingfeng Wu, Peter L. Bartlett, Jason D. Lee, Sham M. Kakade, Bin Yu
arxiv.org/abs/2509.17251

@arXiv_condmatdisnn_bot@mastoxiv.page
2025-10-07 08:28:52

Learning Linear Regression with Low-Rank Tasks in-Context
Kaito Takanami, Takashi Takahashi, Yoshiyuki Kabashima
arxiv.org/abs/2510.04548 a…

@arXiv_mathOC_bot@mastoxiv.page
2025-10-10 09:26:59

An efficient algorithm for kernel quantile regression
Shengxiang Deng, Xudong Li, Yangjing Zhang
arxiv.org/abs/2510.07929 arxiv.org/pdf/251…

@arXiv_statME_bot@mastoxiv.page
2025-10-10 09:25:19

Bayesian Profile Regression with Linear Mixed Models (Profile-LMM) applied to Longitudinal Exposome Data
Matteo Amestoy, Mark van de Wiel, Jeroen Lakerveld, Wessel van Wieringen
arxiv.org/abs/2510.08304

@arXiv_eessSP_bot@mastoxiv.page
2025-09-25 10:23:02

Generalized Nonnegative Structured Kruskal Tensor Regression
Xinjue Wang, Esa Ollila, Sergiy A. Vorobyov, Ammar Mian
arxiv.org/abs/2509.19900

@arXiv_statME_bot@mastoxiv.page
2025-10-07 09:16:12

Bayesian Transfer Learning for High-Dimensional Linear Regression via Adaptive Shrinkage
Parsa Jamshidian, Donatello Telesca
arxiv.org/abs/2510.03449

@arXiv_statML_bot@mastoxiv.page
2025-10-02 09:20:40

Theory of Scaling Laws for In-Context Regression: Depth, Width, Context and Time
Blake Bordelon, Mary I. Letey, Cengiz Pehlevan
arxiv.org/abs/2510.01098

@arXiv_econEM_bot@mastoxiv.page
2025-09-24 07:58:24

Optimal estimation for regression discontinuity design with binary outcomes
Takuya Ishihara, Masayuki Sawada, Kohei Yata
arxiv.org/abs/2509.18857

@arXiv_csLG_bot@mastoxiv.page
2025-10-08 10:54:29

Uncertainty in Machine Learning
Hans Weytjens, Wouter Verbeke
arxiv.org/abs/2510.06007 arxiv.org/pdf/2510.06007

@arXiv_mathST_bot@mastoxiv.page
2025-10-07 09:12:52

Optimality and computational barriers in variable selection under dependence
Ming Gao, Bryon Aragam
arxiv.org/abs/2510.03990 arxiv.org/pdf/…

@datascience@genomic.social
2025-09-21 10:00:01

Use multi level models with {parsnip}: multilevelmod.tidymodels.org/ #rstats #ML

@arXiv_mathNA_bot@mastoxiv.page
2025-10-06 07:52:29

A mesh-free, derivative-free, matrix-free, and highly parallel localized stochastic method for high-dimensional semilinear parabolic PDEs
Shuixin Fang, Changtao Sheng, Bihao Su, Tao Zhou
arxiv.org/abs/2510.02635

@arXiv_csDS_bot@mastoxiv.page
2025-09-24 07:48:14

Linear Regression under Missing or Corrupted Coordinates
Ilias Diakonikolas, Jelena Diakonikolas, Daniel M. Kane, Jasper C. H. Lee, Thanasis Pittas
arxiv.org/abs/2509.19242

@arXiv_csRO_bot@mastoxiv.page
2025-09-30 13:20:51

Crop Spirals: Re-thinking the field layout for future robotic agriculture
Lakshan Lavan, Lanojithan Thiyagarasa, Udara Muthugala, Rajitha de Silva
arxiv.org/abs/2509.25091

@arXiv_statME_bot@mastoxiv.page
2025-10-10 09:21:39

Fitting sparse high-dimensional varying-coefficient models with Bayesian regression tree ensembles
Soham Ghosh, Saloni Bhogale, Sameer K. Deshpande
arxiv.org/abs/2510.08204

@arXiv_statML_bot@mastoxiv.page
2025-10-10 09:27:09

High-dimensional Analysis of Synthetic Data Selection
Parham Rezaei, Filip Kovacevic, Francesco Locatello, Marco Mondelli
arxiv.org/abs/2510.08123

@arXiv_mathGM_bot@mastoxiv.page
2025-09-16 10:10:26

A Type 2 Fuzzy Set Approach for Building Linear Linguistic Regression Analysis under Multi Uncertainty
Junzo Watada, Pei-Chun Lin, Bo Wang, Jeng-Shyang Pan, Jose Guadalupe Flores Muniz
arxiv.org/abs/2509.10498

@arXiv_statME_bot@mastoxiv.page
2025-10-09 09:20:21

Inference in pseudo-observation-based regression using (biased) covariance estimation and naive bootstrapping
Simon Mack, Morten Overgaard, Dennis Dobler
arxiv.org/abs/2510.06815

@arXiv_statML_bot@mastoxiv.page
2025-10-03 09:03:01

Risk Phase Transitions in Spiked Regression: Alignment Driven Benign and Catastrophic Overfitting
Jiping Li, Rishi Sonthalia
arxiv.org/abs/2510.01414

@arXiv_mathST_bot@mastoxiv.page
2025-09-29 08:39:58

A note on the relation between one--step, outcome regression and IPW--type estimators of parameters with the mixed bias property
Andrea Rotnitzky, Ezequiel Smucler, James M. Robins
arxiv.org/abs/2509.22452

@arXiv_csSE_bot@mastoxiv.page
2025-09-17 09:55:50

Vulnerability Patching Across Software Products and Software Components: A Case Study of Red Hat's Product Portfolio
Jukka Ruohonen, Sani Abdullahi, Abhishek Tiwari
arxiv.org/abs/2509.13117

@arXiv_statML_bot@mastoxiv.page
2025-09-29 09:40:47

Preventing Model Collapse Under Overparametrization: Optimal Mixing Ratios for Interpolation Learning and Ridge Regression
Anvit Garg, Sohom Bhattacharya, Pragya Sur
arxiv.org/abs/2509.22341

@arXiv_csCY_bot@mastoxiv.page
2025-09-16 08:29:46

Assisting the Grading of a Handwritten General Chemistry Exam with Artificial Intelligence
Jan Cvengros, Gerd Kortemeyer
arxiv.org/abs/2509.10591

@arXiv_statCO_bot@mastoxiv.page
2025-10-07 13:58:48

Crosslisted article(s) found for stat.CO. arxiv.org/list/stat.CO/new
[1/1]:
- Bayesian Transfer Learning for High-Dimensional Linear Regression via Adaptive Shrinkage
Parsa Jamshidian, Donatello Telesca

@arXiv_condmatstatmech_bot@mastoxiv.page
2025-09-19 08:54:41

Data coarse graining can improve model performance
Alex Nguyen, David J. Schwab, Vudtiwat Ngampruetikorn
arxiv.org/abs/2509.14498 arxiv.org…

@arXiv_econGN_bot@mastoxiv.page
2025-09-22 09:19:41

The Impact of AI Adoption on Retail Across Countries and Industries
Yunqi Liu
arxiv.org/abs/2509.15885 arxiv.org/pdf/2509.15885

@arXiv_mathST_bot@mastoxiv.page
2025-10-02 08:33:21

Mathematical Theory of Collinearity Effects on Machine Learning Variable Importance Measures
Kelvyn K. Bladen, D. Richard Cutler, Alan Wisler
arxiv.org/abs/2510.00557

@arXiv_statML_bot@mastoxiv.page
2025-09-29 09:38:58

Incorporating priors in learning: a random matrix study under a teacher-student framework
Malik Tiomoko, Ekkehard Schnoor
arxiv.org/abs/2509.22124

@arXiv_statME_bot@mastoxiv.page
2025-10-02 09:02:50

Assumption-lean Inference for Network-linked Data
Wei Li, Nilanjan Chakraborty, Robert Lunde
arxiv.org/abs/2510.00287 arxiv.org/pdf/2510.00…

@arXiv_statML_bot@mastoxiv.page
2025-09-18 08:22:31

On the Rate of Gaussian Approximation for Linear Regression Problems
Marat Khusainov, Marina Sheshukova, Alain Durmus, Sergey Samsonov
arxiv.org/abs/2509.14039

@arXiv_statME_bot@mastoxiv.page
2025-09-25 09:09:22

Some Simplifications for the Expectation-Maximization (EM) Algorithm: The Linear Regression Model Case
Daniel A. Griffith
arxiv.org/abs/2509.19461

@arXiv_mathST_bot@mastoxiv.page
2025-10-01 08:36:07

Optimal Nuisance Function Tuning for Estimating a Doubly Robust Functional under Proportional Asymptotics
Sean McGrath, Debarghya Mukherjee, Rajarshi Mukherjee, Zixiao Jolene Wang
arxiv.org/abs/2509.25536

@arXiv_statML_bot@mastoxiv.page
2025-10-06 08:41:09

Adaptive randomized pivoting and volume sampling
Ethan N. Epperly
arxiv.org/abs/2510.02513 arxiv.org/pdf/2510.02513

@arXiv_statML_bot@mastoxiv.page
2025-10-01 10:08:47

Pretrain-Test Task Alignment Governs Generalization in In-Context Learning
Mary I. Letey, Jacob A. Zavatone-Veth, Yue M. Lu, Cengiz Pehlevan
arxiv.org/abs/2509.26551

@arXiv_statME_bot@mastoxiv.page
2025-09-16 10:06:46

KOO Method-based Consistent Clustering for Group-wise Linear Regression with Graph Structure
M. Ohishi, R. Oda
arxiv.org/abs/2509.11103 arx…

@arXiv_statML_bot@mastoxiv.page
2025-09-26 09:14:21

Fast Estimation of Wasserstein Distances via Regression on Sliced Wasserstein Distances
Khai Nguyen, Hai Nguyen, Nhat Ho
arxiv.org/abs/2509.20508

@arXiv_statML_bot@mastoxiv.page
2025-10-02 09:02:31

Guaranteed Noisy CP Tensor Recovery via Riemannian Optimization on the Segre Manifold
Ke Xu, Yuefeng Han
arxiv.org/abs/2510.00569 arxiv.org…

@arXiv_statME_bot@mastoxiv.page
2025-10-03 08:30:01

Repro Samples Method for Model-Free Inference in High-Dimensional Binary Classification
Xiaotian Hou, Peng Wang, Minge Xie, Linjun Zhang
arxiv.org/abs/2510.01468

@arXiv_statME_bot@mastoxiv.page
2025-09-16 10:45:57

Least squares-based methods to bias adjustment in scalar-on-function regression model using a functional instrumental variable
Xiwei Chen, Ufuk Beyaztas, Caihong Qin, Heyang Ji, Gilson Honvoh, Roger S. Zoh, Lan Xue, Carmen D. Tekwe
arxiv.org/abs/2509.12122

@arXiv_statML_bot@mastoxiv.page
2025-09-29 09:23:17

A Random Matrix Perspective of Echo State Networks: From Precise Bias--Variance Characterization to Optimal Regularization
Yessin Moakher, Malik Tiomoko, Cosme Louart, Zhenyu Liao
arxiv.org/abs/2509.22011