Tootfinder

Opt-in global Mastodon full text search. Join the index!

@datascience@genomic.social
2025-11-01 11:00:01

Primer to get you started with Optimization and Mathematical Programming in R #rstats

@arXiv_csCL_bot@mastoxiv.page
2025-10-13 10:33:30

Token-Level Policy Optimization: Linking Group-Level Rewards to Token-Level Aggregation via Markov Likelihood
Xingyu Lin, Yilin Wen, En Wang, Du Su, Wenbin Liu, Chenfu Bao, Zhonghou Lv
arxiv.org/abs/2510.09369

@arXiv_csAI_bot@mastoxiv.page
2025-10-09 09:58:01

Tool-Augmented Policy Optimization: Synergizing Reasoning and Adaptive Tool Use with Reinforcement Learning
Wenxun Wu, Yuanyang Li, Guhan Chen, Linyue Wang, Hongyang Chen
arxiv.org/abs/2510.07038

@arXiv_csLG_bot@mastoxiv.page
2025-10-07 13:07:42

From Noisy Traces to Stable Gradients: Bias-Variance Optimized Preference Optimization for Aligning Large Reasoning Models
Mingkang Zhu, Xi Chen, Bei Yu, Hengshuang Zhao, Jiaya Jia
arxiv.org/abs/2510.05095

@arXiv_mathOC_bot@mastoxiv.page
2025-10-07 11:36:02

A Unified Optimization Framework for Multiclass Classification with Structured Hyperplane Arrangements
V\'ictor Blanco, Harshit Kothari, James Luedtke
arxiv.org/abs/2510.05047

@arXiv_eessSY_bot@mastoxiv.page
2025-10-10 09:34:19

Multi-level informed optimization via decomposed Kriging for large design problems under uncertainty
Enrico Ampellio, Blazhe Gjorgiev, Giovanni Sansavini
arxiv.org/abs/2510.07904

@arXiv_csCE_bot@mastoxiv.page
2025-10-10 07:48:38

Poisson Energy Formulation for Floorplanning: Variational Analysis and Mathematical Foundations
Wenxing Zhu, Hao Ai
arxiv.org/abs/2510.08126

@arXiv_physicsbioph_bot@mastoxiv.page
2025-10-14 08:19:48

Modal analysis and optimization of swimming active filaments
John Severn, Eric Lauga
arxiv.org/abs/2510.09627 arxiv.org/pdf/2510.09627

@arXiv_quantph_bot@mastoxiv.page
2025-10-13 10:01:20

A Framework for Distributed Resource Allocation in Quantum Networks
Nitish K. Panigrahy, Leonardo Bacciottini, C. V. Hollot, Emily A. Van Milligen, Matheus Guedes de Andrade, Nageswara S. V. Rao, Gayane Vardoyan, Don Towsley
arxiv.org/abs/2510.09371

@arXiv_statML_bot@mastoxiv.page
2025-10-07 09:14:02

The analogy theorem in Hoare logic
Nikitin Nikita
arxiv.org/abs/2510.03685 arxiv.org/pdf/2510.03685

@arXiv_mathOC_bot@mastoxiv.page
2025-10-14 09:29:18

Average Kernel Sizes -- Computable Sharp Accuracy Bounds for Inverse Problems
Nina M. Gottschling, David Iagaru, Jakob Gawlikowski, Ioannis Sgouralis
arxiv.org/abs/2510.10229

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 13:54:24

Replaced article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[1/5]:
- Feed Two Birds with One Scone: Exploiting Wild Data for Both Out-of-Distribution Generalization a...
Haoyue Bai, Gregory Canal, Xuefeng Du, Jeongyeol Kwon, Robert Nowak, Yixuan Li
arxiv.org/abs/2306.09158
- Sparse, Efficient and Explainable Data Attribution with DualXDA
Galip \"Umit Yolcu, Moritz Weckbecker, Thomas Wiegand, Wojciech Samek, Sebastian Lapuschkin
arxiv.org/abs/2402.12118 mastoxiv.page/@arXiv_csLG_bot/
- HGQ: High Granularity Quantization for Real-time Neural Networks on FPGAs
Sun, Que, {\AA}rrestad, Loncar, Ngadiuba, Luk, Spiropulu
arxiv.org/abs/2405.00645 mastoxiv.page/@arXiv_csLG_bot/
- On the Identification of Temporally Causal Representation with Instantaneous Dependence
Li, Shen, Zheng, Cai, Song, Gong, Chen, Zhang
arxiv.org/abs/2405.15325 mastoxiv.page/@arXiv_csLG_bot/
- Basis Selection: Low-Rank Decomposition of Pretrained Large Language Models for Target Applications
Yang Li, Daniel Agyei Asante, Changsheng Zhao, Ernie Chang, Yangyang Shi, Vikas Chandra
arxiv.org/abs/2405.15877 mastoxiv.page/@arXiv_csLG_bot/
- Privacy Bias in Language Models: A Contextual Integrity-based Auditing Metric
Yan Shvartzshnaider, Vasisht Duddu
arxiv.org/abs/2409.03735 mastoxiv.page/@arXiv_csLG_bot/
- Low-Rank Filtering and Smoothing for Sequential Deep Learning
Joanna Sliwa, Frank Schneider, Nathanael Bosch, Agustinus Kristiadi, Philipp Hennig
arxiv.org/abs/2410.06800 mastoxiv.page/@arXiv_csLG_bot/
- Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification
Xiaoyu Tao, Tingyue Pan, Mingyue Cheng, Yucong Luo, Qi Liu, Enhong Chen
arxiv.org/abs/2410.18686 mastoxiv.page/@arXiv_csLG_bot/
- Fairness via Independence: A (Conditional) Distance Covariance Framework
Ruifan Huang, Haixia Liu
arxiv.org/abs/2412.00720 mastoxiv.page/@arXiv_csLG_bot/
- Data for Mathematical Copilots: Better Ways of Presenting Proofs for Machine Learning
Simon Frieder, et al.
arxiv.org/abs/2412.15184 mastoxiv.page/@arXiv_csLG_bot/
- Pairwise Elimination with Instance-Dependent Guarantees for Bandits with Cost Subsidy
Ishank Juneja, Carlee Joe-Wong, Osman Ya\u{g}an
arxiv.org/abs/2501.10290 mastoxiv.page/@arXiv_csLG_bot/
- Towards Human-Guided, Data-Centric LLM Co-Pilots
Evgeny Saveliev, Jiashuo Liu, Nabeel Seedat, Anders Boyd, Mihaela van der Schaar
arxiv.org/abs/2501.10321 mastoxiv.page/@arXiv_csLG_bot/
- Regularized Langevin Dynamics for Combinatorial Optimization
Shengyu Feng, Yiming Yang
arxiv.org/abs/2502.00277
- Generating Samples to Probe Trained Models
Eren Mehmet K{\i}ral, Nur\c{s}en Ayd{\i}n, \c{S}. \.Ilker Birbil
arxiv.org/abs/2502.06658 mastoxiv.page/@arXiv_csLG_bot/
- On Agnostic PAC Learning in the Small Error Regime
Julian Asilis, Mikael M{\o}ller H{\o}gsgaard, Grigoris Velegkas
arxiv.org/abs/2502.09496 mastoxiv.page/@arXiv_csLG_bot/
- Preconditioned Inexact Stochastic ADMM for Deep Model
Shenglong Zhou, Ouya Wang, Ziyan Luo, Yongxu Zhu, Geoffrey Ye Li
arxiv.org/abs/2502.10784 mastoxiv.page/@arXiv_csLG_bot/
- On the Effect of Sampling Diversity in Scaling LLM Inference
Wang, Liu, Chen, Light, Liu, Chen, Zhang, Cheng
arxiv.org/abs/2502.11027 mastoxiv.page/@arXiv_csLG_bot/
- How to use score-based diffusion in earth system science: A satellite nowcasting example
Randy J. Chase, Katherine Haynes, Lander Ver Hoef, Imme Ebert-Uphoff
arxiv.org/abs/2505.10432 mastoxiv.page/@arXiv_csLG_bot/
- PEAR: Equal Area Weather Forecasting on the Sphere
Hampus Linander, Christoffer Petersson, Daniel Persson, Jan E. Gerken
arxiv.org/abs/2505.17720 mastoxiv.page/@arXiv_csLG_bot/
- Train Sparse Autoencoders Efficiently by Utilizing Features Correlation
Vadim Kurochkin, Yaroslav Aksenov, Daniil Laptev, Daniil Gavrilov, Nikita Balagansky
arxiv.org/abs/2505.22255 mastoxiv.page/@arXiv_csLG_bot/
- A Certified Unlearning Approach without Access to Source Data
Umit Yigit Basaran, Sk Miraj Ahmed, Amit Roy-Chowdhury, Basak Guler
arxiv.org/abs/2506.06486 mastoxiv.page/@arXiv_csLG_bot/
toXiv_bot_toot

@arXiv_csCE_bot@mastoxiv.page
2025-10-10 07:47:29

Reverse Supply Chain Network Design of a Polyurethane Waste Upcycling System
Dalga Merve \"Ozkan, Sergio Lucia, Sebastian Engell
arxiv.org/abs/2510.08097

@arXiv_mathOC_bot@mastoxiv.page
2025-10-07 11:16:02

Inverse Mixed-Integer Programming: Learning Constraints then Objective Functions
Akira Kitaoka
arxiv.org/abs/2510.04455 arxiv.org/pdf/2510.…

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:58:00

Measuring dissimilarity between convex cones by means of max-min angles
Welington de Oliveira, Valentina Sessa, David Sossa
arxiv.org/abs/2511.10483 arxiv.org/pdf/2511.10483 arxiv.org/html/2511.10483
arXiv:2511.10483v1 Announce Type: new
Abstract: This work introduces a novel dissimilarity measure between two convex cones, based on the max-min angle between them. We demonstrate that this measure is closely related to the Pompeiu-Hausdorff distance, a well-established metric for comparing compact sets. Furthermore, we examine cone configurations where the measure admits simplified or analytic forms. For the specific case of polyhedral cones, a nonconvex cutting-plane method is deployed to compute, at least approximately, the measure between them. Our approach builds on a tailored version of Kelley's cutting-plane algorithm, which involves solving a challenging master program per iteration. When this master program is solved locally, our method yields an angle that satisfies certain necessary optimality conditions of the underlying nonconvex optimization problem yielding the dissimilarity measure between the cones. As an application of the proposed mathematical and algorithmic framework, we address the image-set classification task under limited data conditions, a task that falls within the scope of the \emph{Few-Shot Learning} paradigm. In this context, image sets belonging to the same class are modeled as polyhedral cones, and our dissimilarity measure proves useful for understanding whether two image sets belong to the same class.
toXiv_bot_toot