TaoSR-SHE: Stepwise Hybrid Examination Reinforcement Learning Framework for E-commerce Search Relevance
Pengkun Jiao, Yiming Jin, Jianhui Yang, Chenhe Dong, Zerui Huang, Shaowei Yao, Xiaojiang Zhou, Dan Ou, Haihong Tang
https://arxiv.org/abs/2510.07972
Retentive Relevance: Capturing Long-Term User Value in Recommendation Systems
Saeideh Bakhshi, Phuong Mai Nguyen, Robert Schiller, Tiantian Xu, Pawan Kodandapani, Andrew Levine, Cayman Simpson, Qifan Wang
https://arxiv.org/abs/2510.07621
Putin says Alaska agreements with Trump on Ukraine still relevant: https://benborges.xyz/2025/10/10/putin-says-alaska-agreements-with.html
Der einzig relevante Jahresrückblick kommt natürlich von @…! 😁
Mein Podcast-Jahr 2025. #AntennaPodEcho
1. 11KM: der @…@…
#GNU findutils help:
> ‘environment is too large for exec’
>
> This message means that you have so many environment variables set (or such large values for them) that there is no room within the system-imposed limits on program command line argument length to invoke any program. This is an unlikely situation and is more likely result of an attempt to test the limits of xargs, or break it. Please try unsetting some environment variables, or exiting the current shell. You can also use ‘xargs --show-limits’ to understand the relevant sizes.
Okay, let's check:
$ xargs --show-limits
xargs: environment is too large for exec
🤦
Per Zufall bin ich über die #blogparade2025 gestolpert und da das Thema bei blogissimo interessant war, hab ich mal einen Beitrag geliefert. Hoffentlich #relevant
De maneira geral, as pessoas mostram como são burras em comentšrios sobre notícias em redes sociais. Mas parece que é ainda pior quando são notícias internacionais. Fica um espírito de jogo de futebol somado a um conhecimento nulo de geopolítica. E o cidadão médio parece entender ainda menos de geopolítica do que das outras coisas. Mesmo pessoas que costumam tecer comentšrios relevantes em política nacional comumente falam muita groselha quando assunto é política internacional.
TaoSR-AGRL: Adaptive Guided Reinforcement Learning Framework for E-commerce Search Relevance
Jianhui Yang, Yiming Jin, Pengkun Jiao, Chenhe Dong, Zerui Huang, Shaowei Yao, Xiaojiang Zhou, Dan Ou, Haihong Tang
https://arxiv.org/abs/2510.08048