
2025-07-28 09:18:31
ReCatcher: Towards LLMs Regression Testing for Code Generation
Altaf Allah Abbassi, Leuson Da Silva, Amin Nikanjam, Foutse Khomh
https://arxiv.org/abs/2507.19390 https://…
ReCatcher: Towards LLMs Regression Testing for Code Generation
Altaf Allah Abbassi, Leuson Da Silva, Amin Nikanjam, Foutse Khomh
https://arxiv.org/abs/2507.19390 https://…
Orthogonality conditions for convex regression
Sheng Dai, Timo Kuosmanen, Xun Zhou
https://arxiv.org/abs/2506.21110 https://arxiv.org…
Use multi level models with {parsnip}: http://multilevelmod.tidymodels.org/ #rstats #ML
A Regression-Based Share Market Prediction Model for Bangladesh
Syeda Tasnim Fabiha, Rubaiyat Jahan Mumu, Farzana Aktar, B M Mainul Hossain
https://arxiv.org/abs/2507.18643 http…
Probabilistic Pretraining for Neural Regression
Boris N. Oreshkin, Shiv Tavker, Dmitry Efimov
https://arxiv.org/abs/2508.16355 https://arxiv.org/pdf/2508.1…
Sparse Polynomial Regression under Anomalous Data
Roozbeh Abolpour, Mohammad Reza Hesamzadeh, Maryam Dehghani
https://arxiv.org/abs/2508.18199 https://arxi…
The fundamental limits of minimax risk for high-dimensional speckle noise model
Hao Xing, Soham Jana, Arian Maleki
https://arxiv.org/abs/2508.18503 https://
This https://arxiv.org/abs/2502.14479 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_qfi…
Quantum Communication Complexity of L2-Regularized Linear Regression Protocols
Sayaki Matsushita
https://arxiv.org/abs/2508.16141 https://arxiv.org/pdf/250…
ASP-Assisted Symbolic Regression: Uncovering Hidden Physics in Fluid Mechanics
Theofanis Aravanis, Grigorios Chrimatopoulos, Mohammad Ferdows, Michalis Xenos, Efstratios Em Tzirtzilakis
https://arxiv.org/abs/2507.17777
Integrating Pharmacokinetics and Pharmacodynamics Modeling with Quantum Regression for Predicting Herbal Compound Toxicity
Don Roosan, Saif Nirzhor, Rubayat Khan
https://arxiv.org/abs/2506.20157
Unit-Modified Weibull Distribution and Quantile Regression Model
Jo\~ao In\'acio Scrimini, Cleber Bisognin, Renata Rojas Guerra, F\'abio M. Bayer
https://arxiv.org/abs/2508.17359
Post Hoc Regression Refinement via Pairwise Rankings
Kevin Tirta Wijaya, Michael Sun, Minghao Guo, Hans-Peter Seidel, Wojciech Matusik, Vahid Babaei
https://arxiv.org/abs/2508.16495
FundaQ-8: A Clinically-Inspired Scoring Framework for Automated Fundus Image Quality Assessment
Lee Qi Zun, Oscar Wong Jin Hao, Nor Anita Binti Che Omar, Zalifa Zakiah Binti Asnir, Mohamad Sabri bin Sinal Zainal, Goh Man Fye
https://arxiv.org/abs/2506.20303
CPC-CMS: Cognitive Pairwise Comparison Classification Model Selection Framework for Document-level Sentiment Analysis
Jianfei Li, Kevin Kam Fung Yuen
https://arxiv.org/abs/2507.14022
Binary Response Forecasting under a Factor-Augmented Framework
Tingting Cheng, Jiachen Cong, Fei Liu, Xuanbin Yang
https://arxiv.org/abs/2507.16462 https:/…
(Exhaustive) Symbolic Regression and model selection by minimum description length
Harry Desmond
https://arxiv.org/abs/2507.13033 https://
Zobrist Hash-based Duplicate Detection in Symbolic Regression
Bogdan Burlacu
https://arxiv.org/abs/2508.13859 https://arxiv.org/pdf/2508.13859
Fully Few-shot Class-incremental Audio Classification Using Multi-level Embedding Extractor and Ridge Regression Classifier
Yongjie Si, Yanxiong Li, Jiaxin Tan, Qianhua He, Il-Youp Kwak
https://arxiv.org/abs/2506.18406
Bayesian Variable Selection in Multivariate Regression Under Collinearity in the Design Matrix
Joyee Ghosh, Xun Li
https://arxiv.org/abs/2507.17975 https://
Refining Tc Prediction in Hydrides via Symbolic-Regression-Enhanced Electron-Localization-Function-Based Descriptors
Francesco Belli, Sean Torres, Julia Contreras-Garc\`ia, Eva Zurek
https://arxiv.org/abs/2506.17456
Fast and Efficient Implementation of the Maximum Likelihood Estimation for the Linear Regression with Gaussian Model Uncertainty
Ruohai Guo, Jiang Zhu, Xing Jiang, Fengzhong Qu
https://arxiv.org/abs/2507.11249
Jet Reconstruction with Mamba Networks in Collider Events
Jinmian Li, Peng Li, Bingwei Long, Rao Zhang
https://arxiv.org/abs/2506.18336 https://
Model-Free Kernel Conformal Depth Measures Algorithm for Uncertainty Quantification in Regression Models in Separable Hilbert Spaces
Marcos Matabuena, Rahul Ghosal, Pavlo Mozharovskyi, Oscar Hernan Madrid Padilla, Jukka-Pekka Onnela
https://arxiv.org/abs/2506.08325
Cosmic Distance Duality Relation with DESI DR2 and Transparency
Xuwei Zhang, Xiaofeng Yang, Yunliang Ren, Shuangnan Chen, Yangjun Shi, Cheng Cheng, Xiaolong He
https://arxiv.org/abs/2506.17926
Robust PDE discovery under sparse and highly noisy conditions via attention neural networks
Shilin Zhang, Yunqing Huang, Nianyu Yi, shihan Zhang
https://arxiv.org/abs/2506.17908
Predicting Stock Market Crash with Bayesian Generalised Pareto Regression
Sourish Das
https://arxiv.org/abs/2506.17549 https://arxiv.…
Symbolic Regression-Enhanced Dynamic Wake Meandering: Fast and Physically Consistent Wind-Turbine Wake Modeling
Ding Wang, Dachuan Feng, Kangcheng Zhou, Yuntian Chen, Shijun Liao, Shiyi Chen
https://arxiv.org/abs/2506.14403
Analysis of Photonic Circuit Losses with Machine Learning Techniques
Adrian Nugraha Utama, Simon Chun Kiat Goh, Li Hongyu, Wang Xiangyu, Zhou Yanyan, Victor Leong, Manas Mukherjee
https://arxiv.org/abs/2506.17999
Empirical Models of the Time Evolution of SPX Option Prices
Alessio Brini, David A. Hsieh, Patrick Kuiper, Sean Moushegian, David Ye
https://arxiv.org/abs/2506.17511
Disentangled Deep Smoothed Bootstrap for Fair Imbalanced Regression
Samuel Stocksieker, Denys pommeret, Arthur Charpentier
https://arxiv.org/abs/2508.13829 https://
A Robust Controller based on Gaussian Processes for Robotic Manipulators with Unknown Uncertainty
Giulio Giacomuzzo, Mohamed Abdelwahab, Marco Cal\`i, Alberto Dalla Libera, Ruggero Carli
https://arxiv.org/abs/2507.11170
Multinomial probit model based on joint quantile regression
Masaaki Okabe, Koki Matsuoka, Jun Tsuchida, Hiroshi Yadohisa
https://arxiv.org/abs/2508.13556 https://
Finetuning Large Language Model as an Effective Symbolic Regressor
Yingfan Hua, Ruikun Li, Jun Yao, Guohang Zhuang, Shixiang Tang, Bin Liu, Wanli Ouyang, Yan Lu
https://arxiv.org/abs/2508.09897
Asymptotic confidence bands for the histogram regression estimator
Natalie Neumeyer, Jan Rabe, Mathias Trabs
https://arxiv.org/abs/2508.12391 https://arxiv…
Revisiting Randomization in Greedy Model Search
Xin Chen, Jason M. Klusowski, Yan Shuo Tan, Chang Yu
https://arxiv.org/abs/2506.15643 https://
Swap Regression Methodology for Predicting Relationship with Historical Bivariate Data
Viral Chitlangia, Mosuk Chow, Sharmishtha Mitra
https://arxiv.org/abs/2508.15479 https://
Feature-free regression kriging
Peng Luo, Yilong Wu, Yongze Song
https://arxiv.org/abs/2507.07382 https://arxiv.org/pdf/2507.07382
UPLME: Uncertainty-Aware Probabilistic Language Modelling for Robust Empathy Regression
Md Rakibul Hasan, Md Zakir Hossain, Aneesh Krishna, Shafin Rahman, Tom Gedeon
https://arxiv.org/abs/2508.03520
Calibration offset estimation in mobile hearing tests via categorical loudness scaling
Chen Xu, Birger Kollmeier
https://arxiv.org/abs/2508.14824 https://a…
Gradient Boosting for Spatial Regression Models with Autoregressive Disturbances
Michael Balzer
https://arxiv.org/abs/2506.13682 https://
Efficient data-driven regression for reduced-order modeling of spatial pattern formation
Alessandro Alla, Rudy Geelen, Hannah Lu
https://arxiv.org/abs/2508.06833 https://…
Data-Driven Nonlinear Regulation: Gaussian Process Learning
Telema Harry, Martin Guay, Shimin Wang, Richard D. Braatz
https://arxiv.org/abs/2506.09273 http…
An Interpretable Machine Learning Approach in Predicting Inflation Using Payments System Data: A Case Study of Indonesia
Wishnu Badrawani
https://arxiv.org/abs/2506.10369
ICAS: Detecting Training Data from Autoregressive Image Generative Models
Hongyao Yu, Yixiang Qiu, Yiheng Yang, Hao Fang, Tianqu Zhuang, Jiaxin Hong, Bin Chen, Hao Wu, Shu-Tao Xia
https://arxiv.org/abs/2507.05068
A symbolic regression-based implicit algebraic stress turbulence model: incorporating the production of non-dimensional Reynolds stress deviatoric tensor
Ziqi Ji, Penghao Duan, Gang Du
https://arxiv.org/abs/2507.04679
Let the Tree Decide: FABART A Non-Parametric Factor Model
Sofia Velasco
https://arxiv.org/abs/2506.11551 https://arxiv.org/pdf/2506.1…
Projection-based multifidelity linear regression for data-scarce applications
Vignesh Sella, Julie Pham, Karen Willcox, Anirban Chaudhuri
https://arxiv.org/abs/2508.08517 https:…
Constraint-Guided Symbolic Regression for Data-Efficient Kinetic Model Discovery
Miguel \'Angel de Carvalho Servia (Mimi), Ilya Orson Sandoval (Mimi), King Kuok (Mimi), Hii, Klaus Hellgardt, Dongda Zhang, Ehecatl Antonio del Rio Chanona
https://arxiv.org/abs/2507.02730
Average quantile regression: a new non-mean regression model and coherent risk measure
Rong Jiang, M. C. Jones, Keming Yu, Jiangfeng Wang
https://arxiv.org/abs/2506.23059
High-dimensional regression with outcomes of mixed-type using the multivariate spike-and-slab LASSO
Soham Ghosh, Sameer K. Deshpande
https://arxiv.org/abs/2506.13007
Leveraging Large Language Models for Predictive Analysis of Human Misery
Bishanka Seal, Rahul Seetharaman, Aman Bansal, Abhilash Nandy
https://arxiv.org/abs/2508.12669 https://
Discovering the underlying analytic structure within Standard Model constants using artificial intelligence
S. V. Chekanov, H. Kjellerstrand
https://arxiv.org/abs/2507.00225
Identifying Optimal Regression Models For DEM Simulation Datasets
B. D. Jenkins, A. L. Nicusan, A. Neveu, G. Lumay, F. Francqui, J. P. K. Seville, C. R. K. Windows-Yule
https://arxiv.org/abs/2508.05308
TRUST: Transparent, Robust and Ultra-Sparse Trees
Albert Dorador
https://arxiv.org/abs/2506.15791 https://arxiv.org/pdf/2506.15791
A Self-scaled Approximate $\ell_0$ Regularization Robust Model for Outlier Detection
Pengyang Song, Jue Wang
https://arxiv.org/abs/2506.22277 https://
Bayesian symbolic regression: Automated equation discovery from a physicists' perspective
Roger Guimera, Marta Sales-Pardo
https://arxiv.org/abs/2507.19540 https://
A Nonparametric Approach to Augmenting a Bayesian VAR with Nonlinear Factors
Todd Clark, Florian Huber, Gary Koop
https://arxiv.org/abs/2508.13972 https://…
A critical assessment of machine learning in fluid dynamics
Kunihiko Taira, Georgios Rigas, Kai Fukami
https://arxiv.org/abs/2508.13430 https://arxiv.org/p…
Oldies but Goldies: The Potential of Character N-grams for Romanian Texts
Dana Lupsa, Sanda-Maria Avram
https://arxiv.org/abs/2506.15650 https://
This https://arxiv.org/abs/2502.05210 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_qfi…
This https://arxiv.org/abs/2312.01602 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_qu…
Primer to get you started with Optimization and Mathematical Programming in R #rstats
A Framework for Nonstationary Gaussian Processes with Neural Network Parameters
Zachary James, Joseph Guinness
https://arxiv.org/abs/2507.12262 https://
A Framework for Creating Non-Regressive Test Cases via Branch Consistency Analysis Driven by Descriptions
Yuxiang Zhang, Pengyu Xue, Zhen Yang, Xiaoxue Ren, Xiang Li, Linhao Wu, Jiancheng Zhao, Xingda Yu
https://arxiv.org/abs/2506.07486
Residual 1D CNN for Low SFR Surface Density Regression: A Design Note
Po-Chieh Yu
#toXiv_bot_toot
Debiased Prediction Inference with Non-sparse Loadings in Misspecified High-dimensional Regression Models
Libin Liang, Zhiqiang Tan
https://arxiv.org/abs/2507.10944
Nonlinear projection-based model order reduction with machine learning regression for closure error modeling in the latent space
S. Ares de Parga, Radek Tezaur, Carlos G. Hern\'andez, Charbel Farhat
https://arxiv.org/abs/2507.00634
Akaike information criterion for segmented regression models
Kazuki Nakajima, Yoshiyuki Ninomiya
https://arxiv.org/abs/2506.08760 https://
This https://arxiv.org/abs/2506.01348 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csLG_…
Estimating the Number of Components in Panel Data Finite Mixture Regression Models with an Application to Production Function Heterogeneity
Yu Hao, Hiroyuki Kasahara
https://arxiv.org/abs/2506.09666
Test of partial effects for Frechet regression on Bures-Wasserstein manifolds
Haoshu Xu, Hongzhe Li
https://arxiv.org/abs/2506.23487 https://
R2 priors for Grouped Variance Decomposition in High-dimensional Regression
Javier Enrique Aguilar, David Kohns, Aki Vehtari, Paul-Christian B\"urkner
https://arxiv.org/abs/2507.11833
Non-asymptotic convergence bound of conditional diffusion models
Mengze Li
https://arxiv.org/abs/2508.10944 https://arxiv.org/pdf/2508.10944
Stealing Accuracy: Predicting Day-ahead Electricity Prices with Temporal Hierarchy Forecasting (THieF)
Arkadiusz Lipiecki, Kaja Bilinska, Nicolaos Kourentzes, Rafal Weron
https://arxiv.org/abs/2508.11372
Diffusion index forecasts under weaker loadings: PCA, ridge regression, and random projections
Tom Boot, Bart Keijsers
https://arxiv.org/abs/2506.09575 htt…
Generative Flexible Latent Structure Regression (GFLSR) model
Clara Grazian, Qian Jin, Pierre Lafaye De Micheaux
https://arxiv.org/abs/2508.04393 https://a…
Galerkin-ARIMA: A Two-Stage Polynomial Regression Framework for Fast Rolling One-Step-Ahead Forecasting
Haojie Liu, Zihan Lin
https://arxiv.org/abs/2507.07469
Multi-Task Reward Learning from Human Ratings
Mingkang Wu, Devin White, Evelyn Rose, Vernon Lawhern, Nicholas R Waytowich, Yongcan Cao
https://arxiv.org/abs/2506.09183
Bayesian wavelet shrinkage for low SNR data based on the Epanechnikov kernel
Fidel Aniano Causil Barrios, Alex Rodrigo dos Santos Sousa
https://arxiv.org/abs/2507.11718
Bayesian Double Machine Learning for Causal Inference
Francis J. DiTraglia, Laura Liu
https://arxiv.org/abs/2508.12688 https://arxiv.org/pdf/2508.12688
FedCVD : Communication-Efficient Federated Learning for Cardiovascular Risk Prediction with Parametric and Non-Parametric Model Optimization
Abdelrhman Gaber, Hassan Abd-Eltawab, John Elgallab, Youssif Abuzied, Dineo Mpanya, Turgay Celik, Swarun Kumar, Tamer ElBatt
https://arxiv.org/abs/2507.22963…
Generative Regression with IQ-BART
Sean O'Hagan, Veronika Ro\v{c}kov\'a
https://arxiv.org/abs/2507.04168 https://arxiv.org/pd…
Quantile Reward Policy Optimization: Alignment with Pointwise Regression and Exact Partition Functions
Simon Matrenok, Skander Moalla, Caglar Gulcehre
https://arxiv.org/abs/2507.08068 https://arxiv.org/pdf/2507.08068 https://arxiv.org/html/2507.08068
arXiv:2507.08068v1 Announce Type: new
Abstract: Aligning large language models with pointwise absolute rewards has so far required online, on-policy algorithms such as PPO and GRPO. In contrast, simpler methods that can leverage offline or off-policy data, such as DPO and REBEL, are limited to learning from preference pairs or relative signals. To bridge this gap, we introduce \emph{Quantile Reward Policy Optimization} (QRPO), which learns from pointwise absolute rewards while preserving the simplicity and offline applicability of DPO-like methods. QRPO uses quantile rewards to enable regression to the closed-form solution of the KL-regularized RL objective. This reward yields an analytically tractable partition function, removing the need for relative signals to cancel this term. Moreover, QRPO scales with increased compute to estimate quantile rewards, opening a new dimension for pre-computation scaling. Empirically, QRPO consistently achieves top performance on chat and coding evaluations -- reward model scores, AlpacaEval 2, and LeetCode -- compared to DPO, REBEL, and SimPO across diverse datasets and 8B-scale models. Finally, we find that training with robust rewards instead of converting them to preferences induces less length bias.
toXiv_bot_toot
This https://arxiv.org/abs/2503.00772 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_eco…
Soil Texture Prediction with Bayesian Generalized Additive Models for Spatial Compositional Data
Joaqu\'in Mart\'inez-Minaya, Lore Zumeta-Olaskoaga, Dae-Jin Lee
https://arxiv.org/abs/2508.07708
Replaced article(s) found for econ.EM. https://arxiv.org/list/econ.EM/new
[1/1]:
- Nonparametric Treatment Effect Identification in School Choice
Jiafeng Chen
https://arxiv.org/abs/2112.03872
- Potential weights and implicit causal designs in linear regression
Jiafeng Chen
https://arxiv.org/abs/2407.21119 https://mastoxiv.page/@arXiv_econEM_bot/112885535340833628
- Reinterpreting demand estimation
Jiafeng Chen
https://arxiv.org/abs/2503.23524 https://mastoxiv.page/@arXiv_econEM_bot/114262944644769755
- A step towards the integration of machine learning and classic model-based survey methods
Tomasz \.Z\k{a}d{\l}o, Adam Chwila
https://arxiv.org/abs/2402.07521 https://mastoxiv.page/@arXiv_statME_bot/111924442633277025
- Galerkin-ARIMA: A Two-Stage Polynomial Regression Framework for Fast Rolling One-Step-Ahead Forec...
Haojie Liu, Zihan Lin
https://arxiv.org/abs/2507.07469 https://mastoxiv.page/@arXiv_statML_bot/114833708254543213
toXiv_bot_toot
AICO: Feature Significance Tests for Supervised Learning
Kay Giesecke, Enguerrand Horel, Chartsiri Jirachotkulthorn
https://arxiv.org/abs/2506.23396 https:…
Predictive Causal Inference via Spatio-Temporal Modeling and Penalized Empirical Likelihood
Byunghee Lee, Hye Yeon Sin, Joonsung Kang
https://arxiv.org/abs/2507.08896
Structural Extrapolation in Regression Discontinuity Designs with an Application to School Expenditure Referenda
Austin Feng, Francesco Ruggieri
https://arxiv.org/abs/2508.02658
A novel approach to generate distributions
Subhankar Dutta, Roberto Vila, Terezinha K. A. Ribeiro
https://arxiv.org/abs/2508.11861 https://arxiv.org/pdf/25…
Efficient Gibbs Sampling in Cox Regression Models Using Composite Partial Likelihood and P\'olya-Gamma Augmentation
Shu Tamano, Yui Tomo
https://arxiv.org/abs/2506.04675
Partially-shared Imaging Regression on Integrating Heterogeneous Brain-Cognition Associations across Alzheimer's Diagnoses
Yang Sui, Qi Xu, Ting Li, Yang Bai, Annie Qu
https://arxiv.org/abs/2505.24259
This https://arxiv.org/abs/2310.16207 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_sta…
This https://arxiv.org/abs/2504.14515 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_sta…
Wavelet shrinkage based on the raised cosine prior
Juliana Marchesi Reina, Alex Rodrigo dos Santos Sousa
https://arxiv.org/abs/2507.10794 https://
Bayesian variable selection in a Cox proportional hazards model with the "Sum of Single Effects" prior
Yunqi Yang, Karl Tayeb, Peter Carbonetto, Xiaoyuan Zhong, Carole Ober, Matthew Stephens
https://arxiv.org/abs/2506.06233
Inference in a generalized Bradley-Terry model for paired comparisons with covariates and a growing number of subjects
Ting Yan
https://arxiv.org/abs/2507.22472 https://
Regression Analysis of Reciprocity in Directed Networks
Rui Feng, Chenlei Leng
https://arxiv.org/abs/2507.21469 https://arxiv.org/pdf/2507.21469
Stochastic Taylor expansion via Poisson point processes
Weichao Wu, Athanasios C. Micheas
https://arxiv.org/abs/2508.04703 https://arxiv.org/pdf/2508.04703…