
2025-08-19 10:10:50
Modeling wind farm noise emission and propagation: effects of flow layout
J. Colas, A. Emmanuelli, D. Dragna, R. J. A. M. Stevens
https://arxiv.org/abs/2508.13128 https://
Modeling wind farm noise emission and propagation: effects of flow layout
J. Colas, A. Emmanuelli, D. Dragna, R. J. A. M. Stevens
https://arxiv.org/abs/2508.13128 https://
How to craft a deep reinforcement learning policy for wind farm flow control
Elie Kadoche, Pascal Bianchi, Florence Carton, Philippe Ciblat, Damien Ernst
https://arxiv.org/abs/2506.06204
Probabilistic Forecasting Method for Offshore Wind Farm Cluster under Typhoon Conditions: a Score-Based Conditional Diffusion Model
Jinhua He, Zechun Hu
https://arxiv.org/abs/2508.10705
Symbolic Regression-Enhanced Dynamic Wake Meandering: Fast and Physically Consistent Wind-Turbine Wake Modeling
Ding Wang, Dachuan Feng, Kangcheng Zhou, Yuntian Chen, Shijun Liao, Shiyi Chen
https://arxiv.org/abs/2506.14403
Flying Base Stations for Offshore Wind Farm Monitoring and Control: Holistic Performance Evaluation and Optimization
Xinyi Lin, Peizheng Li, Adnan Aijaz
https://arxiv.org/abs/2507.07832
"The Berwick Bank wind farm, located off the eastern coast of Scotland could provide power to 6 million homes."
Scotland Gives Go-Ahead for World’s Largest Offshore Wind Farm - Bloomberg
https://archive.ph/dTs18#selection-1527.0-1531.94
Die britische Regierung hebt den maximalen Vergütungspreis für neue #Windenergie-Projekte an, um Investitionen in #ErneuerbareEnergien zu fördern und das Ziel eines nahezu fossilfreien Stromnetzes bis 2030 zu erreichen.
Offshore-Wind darf künftig bis zu £113/MWh kosten, Floatin…
Power loss mechanisms and optimal induction factors for realistic large wind farms
Takafumi Nishino, Amanda S. M. Smyth
https://arxiv.org/abs/2508.02727 https://
Reinforcement Learning Increases Wind Farm Power Production by Enabling Closed-Loop Collaborative Control
Andrew Mole, Max Weissenbacher, Georgios Rigas, Sylvain Laizet
https://arxiv.org/abs/2506.20554
Instantaneous Failure, Repair and Mobility Rates for Markov Reliability Systems: A Wind-Farm application
Guglielmo D'Amico, Filippo Petroni
https://arxiv.org/abs/2506.17280