Cultured Code: Server-Backend von Things nun auch in Swift
Die Programmiersprache Swift wird in immer mehr Apps für Apple-Plattformen verwendet. Cultured Code hat das nun auch beim Server getan.
https:/…
Das #Rezept des Tages:
#Rührei geht nicht nur mit #Schnittlauch, sondern auch mit fein gehackten #Brennnesseln
Bridging Offline and Online Reinforcement Learning for LLMs
Jack Lanchantin, Angelica Chen, Janice Lan, Xian Li, Swarnadeep Saha, Tianlu Wang, Jing Xu, Ping Yu, Weizhe Yuan, Jason E Weston, Sainbayar Sukhbaatar, Ilia Kulikov
https://arxiv.org/abs/2506.21495 https://arxiv.org/pdf/2506.21495 https://arxiv.org/html/2506.21495
arXiv:2506.21495v1 Announce Type: new
Abstract: We investigate the effectiveness of reinforcement learning methods for finetuning large language models when transitioning from offline to semi-online to fully online regimes for both verifiable and non-verifiable tasks. Our experiments cover training on verifiable math as well as non-verifiable instruction following with a set of benchmark evaluations for both. Across these settings, we extensively compare online and semi-online Direct Preference Optimization and Group Reward Policy Optimization objectives, and surprisingly find similar performance and convergence between these variants, which all strongly outperform offline methods. We provide a detailed analysis of the training dynamics and hyperparameter selection strategies to achieve optimal results. Finally, we show that multi-tasking with verifiable and non-verifiable rewards jointly yields improved performance across both task types.
toXiv_bot_toot
Faithful-Newton Framework: Bridging Inner and Outer Solvers for Enhanced Optimization
Alexander Lim, Fred Roosta
https://arxiv.org/abs/2506.13154 https://