Tootfinder

Opt-in global Mastodon full text search. Join the index!

@tiotasram@kolektiva.social
2025-08-11 13:26:07

How the US democracy is designed to avoid representation
Right now in the US, a system which proclaims to give each citizen representation, my interests are not represented very well by most of my so-called representatives at any level of government. This is true for a majority of Americans across the political spectrum, and it happens by design. The "founding fathers" were explicit about wanting a system of government that would appear Democratic but which would keep power in the hands of rich white landowners, and they successfully designed exactly that. But how does disenfranchisement work in this system?
First, a two-party system locked in by first-post-the-post winner-takes-all elections immediately destroys representation for everyone who didn't vote for the winner, including those who didn't vote or weren't eligible to vote. Single-day non-holiday elections and prisoner disenfranchisement go a long way towards ensuring working-class people get no say, but much larger is the winner-takes all system. In fact, even people who vote for the winning candidate don't get effective representation if they're really just voting against the opponent as the greater of two evils. In a 51/49 election with 50% turnout, you've immediately ensured that ~75% of eligible voters don't get represented, and with lesser-of-two-evils voting, you create an even wider gap to wedge corporate interests into. Politicians need money to saturate their lesser-of-two-evils message far more than they need to convince any individual voter to support their policies. It's even okay if they get caught lying, cheating, or worse (cough Epstein cough) as long as the other side is also doing those things and you can freeze out new parties.
Second, by design the Senate ensures uneven representation, allowing control of the least-populous half of states to control or at least shut down the legislative process. A rough count suggests 284.6 million live in the 25 most-populous states, while only 54.8 million live in the rest. Currently, counting states with divided representation as two half-states with half as much population, 157.8 million people are represented by 53 Republican sensors, while 180.5 million people get only 45 seats of Democratic representation. This isn't an anti-Democrat bias, it's a bias towards less-populous states, whose residents get more than their share it political power.
I haven't even talked about gerrymandering yet, or family/faith-based "party loyalty," etc. Overall, the effect is that the number of people whose elected representatives meaningfully represent their interests on any given issue is vanishingly small (like, 10% of people tops), unless you happen to be rich enough to purchase lobbying power or direct access.
If we look at polls, we can see how lack of representation lets congress & the president enact many policies that go against what a majority of the population wants. Things like abortion restrictions, the current ICE raids, and Medicare cuts are deeply unpopular, but they benefit the political class and those who can buy access. These are possible because the system ensures at every step of the way that ordinary people do NOT get the one thing the system promises them: representation in the halls of power.
Okay, but is this a feature of all democracies, inherent in the nature of a majority-decides system? Not exactly...
1/2
#uspol #democracy

@pbloem@sigmoid.social
2025-06-10 07:31:42

This is an interesting take on how AI can, in specific cases, when used carefully, be used to level the playing field.
tylertringas.com/ai-legal/
I think this is true in many situations, including education. We just have to get past the shortcuts, the blind faith and the hype,…

@tiotasram@kolektiva.social
2025-08-04 15:49:00

Should we teach vibe coding? Here's why not.
Should AI coding be taught in undergrad CS education?
1/2
I teach undergraduate computer science labs, including for intro and more-advanced core courses. I don't publish (non-negligible) scholarly work in the area, but I've got years of craft expertise in course design, and I do follow the academic literature to some degree. In other words, In not the world's leading expert, but I have spent a lot of time thinking about course design, and consider myself competent at it, with plenty of direct experience in what knowledge & skills I can expect from students as they move through the curriculum.
I'm also strongly against most uses of what's called "AI" these days (specifically, generative deep neutral networks as supplied by our current cadre of techbro). There are a surprising number of completely orthogonal reasons to oppose the use of these systems, and a very limited number of reasonable exceptions (overcoming accessibility barriers is an example). On the grounds of environmental and digital-commons-pollution costs alone, using specifically the largest/newest models is unethical in most cases.
But as any good teacher should, I constantly question these evaluations, because I worry about the impact on my students should I eschew teaching relevant tech for bad reasons (and even for his reasons). I also want to make my reasoning clear to students, who should absolutely question me on this. That inspired me to ask a simple question: ignoring for one moment the ethical objections (which we shouldn't, of course; they're very stark), at what level in the CS major could I expect to teach a course about programming with AI assistance, and expect students to succeed at a more technically demanding final project than a course at the same level where students were banned from using AI? In other words, at what level would I expect students to actually benefit from AI coding "assistance?"
To be clear, I'm assuming that students aren't using AI in other aspects of coursework: the topic of using AI to "help you study" is a separate one (TL;DR it's gross value is not negative, but it's mostly not worth the harm to your metacognitive abilities, which AI-induced changes to the digital commons are making more important than ever).
So what's my answer to this question?
If I'm being incredibly optimistic, senior year. Slightly less optimistic, second year of a masters program. Realistic? Maybe never.
The interesting bit for you-the-reader is: why is this my answer? (Especially given that students would probably self-report significant gains at lower levels.) To start with, [this paper where experienced developers thought that AI assistance sped up their work on real tasks when in fact it slowed it down] (arxiv.org/abs/2507.09089) is informative. There are a lot of differences in task between experienced devs solving real bugs and students working on a class project, but it's important to understand that we shouldn't have a baseline expectation that AI coding "assistants" will speed things up in the best of circumstances, and we shouldn't trust self-reports of productivity (or the AI hype machine in general).
Now we might imagine that coding assistants will be better at helping with a student project than at helping with fixing bugs in open-source software, since it's a much easier task. For many programming assignments that have a fixed answer, we know that many AI assistants can just spit out a solution based on prompting them with the problem description (there's another elephant in the room here to do with learning outcomes regardless of project success, but we'll ignore this over too, my focus here is on project complexity reach, not learning outcomes). My question is about more open-ended projects, not assignments with an expected answer. Here's a second study (by one of my colleagues) about novices using AI assistance for programming tasks. It showcases how difficult it is to use AI tools well, and some of these stumbling blocks that novices in particular face.
But what about intermediate students? Might there be some level where the AI is helpful because the task is still relatively simple and the students are good enough to handle it? The problem with this is that as task complexity increases, so does the likelihood of the AI generating (or copying) code that uses more complex constructs which a student doesn't understand. Let's say I have second year students writing interactive websites with JavaScript. Without a lot of care that those students don't know how to deploy, the AI is likely to suggest code that depends on several different frameworks, from React to JQuery, without actually setting up or including those frameworks, and of course three students would be way out of their depth trying to do that. This is a general problem: each programming class carefully limits the specific code frameworks and constructs it expects students to know based on the material it covers. There is no feasible way to limit an AI assistant to a fixed set of constructs or frameworks, using current designs. There are alternate designs where this would be possible (like AI search through adaptation from a controlled library of snippets) but those would be entirely different tools.
So what happens on a sizeable class project where the AI has dropped in buggy code, especially if it uses code constructs the students don't understand? Best case, they understand that they don't understand and re-prompt, or ask for help from an instructor or TA quickly who helps them get rid of the stuff they don't understand and re-prompt or manually add stuff they do. Average case: they waste several hours and/or sweep the bugs partly under the rug, resulting in a project with significant defects. Students in their second and even third years of a CS major still have a lot to learn about debugging, and usually have significant gaps in their knowledge of even their most comfortable programming language. I do think regardless of AI we as teachers need to get better at teaching debugging skills, but the knowledge gaps are inevitable because there's just too much to know. In Python, for example, the LLM is going to spit out yields, async functions, try/finally, maybe even something like a while/else, or with recent training data, the walrus operator. I can't expect even a fraction of 3rd year students who have worked with Python since their first year to know about all these things, and based on how students approach projects where they have studied all the relevant constructs but have forgotten some, I'm not optimistic seeing these things will magically become learning opportunities. Student projects are better off working with a limited subset of full programming languages that the students have actually learned, and using AI coding assistants as currently designed makes this impossible. Beyond that, even when the "assistant" just introduces bugs using syntax the students understand, even through their 4th year many students struggle to understand the operation of moderately complex code they've written themselves, let alone written by someone else. Having access to an AI that will confidently offer incorrect explanations for bugs will make this worse.
To be sure a small minority of students will be able to overcome these problems, but that minority is the group that has a good grasp of the fundamentals and has broadened their knowledge through self-study, which earlier AI-reliant classes would make less likely to happen. In any case, I care about the average student, since we already have plenty of stuff about our institutions that makes life easier for a favored few while being worse for the average student (note that our construction of that favored few as the "good" students is a large part of this problem).
To summarize: because AI assistants introduce excess code complexity and difficult-to-debug bugs, they'll slow down rather than speed up project progress for the average student on moderately complex projects. On a fixed deadline, they'll result in worse projects, or necessitate less ambitious project scoping to ensure adequate completion, and I expect this remains broadly true through 4-6 years of study in most programs (don't take this as an endorsement of AI "assistants" for masters students; we've ignored a lot of other problems along the way).
There's a related problem: solving open-ended project assignments well ultimately depends on deeply understanding the problem, and AI "assistants" allow students to put a lot of code in their file without spending much time thinking about the problem or building an understanding of it. This is awful for learning outcomes, but also bad for project success. Getting students to see the value of thinking deeply about a problem is a thorny pedagogical puzzle at the best of times, and allowing the use of AI "assistants" makes the problem much much worse. This is another area I hope to see (or even drive) pedagogical improvement in, for what it's worth.
1/2

@keen456@infosec.exchange
2025-07-02 02:20:23

@… Saw this pop up on a Discord I'm on, and was like "wow, that brings the meme to a whole new level".
Is this a thing you could even do on Linux currently?

 I installed Crysis 3 on my graphics card! 
I used some VRAM drive software called GPU Ram Drive, made a 15 GB NTFS partition on the GPU, then installed Crysis 3 on it 
At 4K very high settings get good fps and the game loads very fast - GPU-Z reports total VRAM use 20434MB
@pre@boing.world
2025-06-26 17:04:54
Content warning: UKPol, Palestine Action, Email to my MP

Dear Emily Thornberry,
I don't usually bother to write to you on most issues because I figure there is pretty much no point communicating with a whipped MP in a safe seat under first past the post. Such an MP has no reason to listen to their constituents at all, and is entirely a tool of the party leadership.
I make an exception today since I hear your government is about to classify Palestine Action as a terrorist group. Despite them being peaceful, non-violent, and dedicated entirely to preventing the greater crime of the ongoing genocide of Gazan Palestinians.
This is obviously a gross overreaction and a completely unjustifiable act designed not to prevent domestic terrorism but to cover up British forces and UK government involvement and collaboration with the genocide in Gaza.
If we are taking suggestions for groups to ban as terrorists even though they aren't terrorists, I would like to suggest the Labour Party! The party has helped facilitate a genocide abroad, and continues to supply the perpetrators with arms and intelligence to aid their actions.
I don't expect you to take that suggestion seriously, but maybe Reform will take it seriously when they get elected in a few years and I suggest it again to them. After all, a precedent will have been set that groups which aren't terrorists can be banned under anti-terror legislation anyway. Democracy will have already been eroded.
I was ready to be disappointed by this Labour government, but I confess that the level of gut-wrenching visceral disgust I am experiencing at them surpassed all my wildest expectations. Taking money from the disabled to buy new war-planes from a fascist US president while abetting a genocide in Gaza makes me wonder if Reform wouldn't be better in the end anyway. At least they might do electoral reform and nationalize the water companies.
Labour's only hope, the country's only hope, is to remove Starmer. I wish you had won that leadership election instead of him.
Anyway, as I say, I don't expect it to make any difference at all because under this election system even MPs in safe seats are nothing but tools of the party leadership and the party leadership seems determined. But I thought I'd let you know that I see you. I see what you are doing.
I support Palestine Action more than I support this government. Let me know where I should hand myself in for my "crime".
Yours sincerely,
Adam

@tiotasram@kolektiva.social
2025-07-30 17:56:35

Just read this post by @… on an optimistic AGI future, and while it had some interesting and worthwhile ideas, it's also in my opinion dangerously misguided, and plays into the current AGI hype in a harmful way.
social.coop/@eloquence/1149406
My criticisms include:
- Current LLM technology has many layers, but the biggest most capable models are all tied to corporate datacenters and require inordinate amounts of every and water use to run. Trying to use these tools to bring about a post-scarcity economy will burn up the planet. We urgently need more-capable but also vastly more efficient AI technologies if we want to use AI for a post-scarcity economy, and we are *not* nearly on the verge of this despite what the big companies pushing LLMs want us to think.
- I can see that permacommons.org claims a small level of expenses on AI equates to low climate impact. However, given current deep subsidies on place by the big companies to attract users, that isn't a great assumption. The fact that their FAQ dodges the question about which AI systems they use isn't a great look.
- These systems are not free in the same way that Wikipedia or open-source software is. To run your own model you need a data harvesting & cleaning operation that costs millions of dollars minimum, and then you need millions of dollars worth of storage & compute to train & host the models. Right now, big corporations are trying to compete for market share by heavily subsidizing these things, but it you go along with that, you become dependent on them, and you'll be screwed when they jack up the price to a profitable level later. I'd love to see open dataset initiatives SBD the like, and there are some of these things, but not enough yet, and many of the initiatives focus on one problem while ignoring others (fine for research but not the basis for a society yet).
- Between the environmental impacts, the horrible labor conditions and undercompensation of data workers who filter the big datasets, and the impacts of both AI scrapers and AI commons pollution, the developers of the most popular & effective LLMs have a lot of answer for. This project only really mentions environmental impacts, which makes me think that they're not serious about ethics, which in turn makes me distrustful of the whole enterprise.
- Their language also ends up encouraging AI use broadly while totally ignoring several entire classes of harm, so they're effectively contributing to AI hype, especially with such casual talk of AGI and robotics as if embodied AGI were just around the corner. To be clear about this point: we are several breakthroughs away from AGI under the most optimistic assumptions, and giving the impression that those will happen soon plays directly into the hands of the Sam Altmans of the world who are trying to make money off the impression of impending huge advances in AI capabilities. Adding to the AI hype is irresponsible.
- I've got a more philosophical criticism that I'll post about separately.
I do think that the idea of using AI & other software tools, possibly along with robotics and funded by many local cooperatives, in order to make businesses obsolete before they can do the same to all workers, is a good one. Get your local library to buy a knitting machine alongside their 3D printer.
Lately I've felt too busy criticizing AI to really sit down and think about what I do want the future to look like, even though I'm a big proponent of positive visions for the future as a force multiplier for criticism, and this article is inspiring to me in that regard, even if the specific project doesn't seem like a good one.

@tiotasram@kolektiva.social
2025-06-21 02:34:13

Why AI can't possibly make you more productive; long
#AI and "productivity", some thoughts:
Edit: fixed some typos.
Productivity is a concept that isn't entirely meaningless outside the context of capitalism, but it's a concept that is heavily inflected in a capitalist context. In many uses today it effectively means "how much you can satisfy and/or exceed your boss' expectations." This is not really what it should mean: even in an anarchist utopia, people would care about things like how many shirts they can produce in a week, although in an "I'd like to voluntarily help more people" way rather than an "I need to meet this quota to earn my survival" way. But let's roll with this definition for a second, because it's almost certainly what your boss means when they say "productivity", and understanding that word in a different (even if truer) sense is therefore inherently dangerous.
Accepting "productivity" to mean "satisfying your boss' expectations," I will now claim: the use of generative AI cannot increase your productivity.
Before I dive in, it's imperative to note that the big generative models which most people think of as constituting "AI" today are evil. They are 1: pouring fuel on our burning planet, 2: psychologically strip-mining a class of data laborers who are exploited for their precarity, 3: enclosing, exploiting, and polluting the digital commons, and 4: stealing labor from broad classes of people many of whom are otherwise glad to give that labor away for free provided they get a simple acknowledgement in return. Any of these four "ethical issues" should be enough *alone* to cause everyone to simply not use the technology. These ethical issues are the reason that I do not use generative AI right now, except for in extremely extenuating circumstances. These issues are also convincing for a wide range of people I talk to, from experts to those with no computer science background. So before I launch into a critique of the effectiveness of generative AI, I want to emphasize that such a critique should be entirely unnecessary.
But back to my thesis: generative AI cannot increase your productivity, where "productivity" has been defined as "how much you can satisfy and/or exceed your boss' expectations."
Why? In fact, what the fuck? Every AI booster I've met has claimed the opposite. They've given me personal examples of time saved by using generative AI. Some of them even truly believe this. Sometimes I even believe they saved time without horribly compromising on quality (and often, your boss doesn't care about quality anyways if the lack of quality is hard to measure of doesn't seem likely to impact short-term sales/feedback/revenue). So if generative AI genuinely lets you write more emails in a shorter period of time, or close more tickets, or something else along these lines, how can I say it isn't increasing your ability to meet your boss' expectations?
The problem is simple: your boss' expectations are not a fixed target. Never have been. In virtue of being someone who oversees and pays wages to others under capitalism, your boss' game has always been: pay you less than the worth of your labor, so that they can accumulate profit and thus more capital to remain in charge instead of being forced into working for a wage themselves. Sure, there are layers of management caught in between who aren't fully in this mode, but they are irrelevant to this analysis. It matters not how much you please your manager if your CEO thinks your work is not worth the wages you are being paid. And using AI actively lowers the value of your work relative to your wages.
Why do I say that? It's actually true in several ways. The most obvious: using generative AI lowers the quality of your work, because the work it produces is shot through with errors, and when your job is reduced to proofreading slop, you are bound to tire a bit, relax your diligence, and let some mistakes through. More than you would have if you are actually doing and taking pride in the work. Examples are innumerable and frequent, from journalists to lawyers to programmers, and we laugh at them "haha how stupid to not check whether the books the AI reviewed for you actually existed!" but on a deeper level if we're honest we know we'd eventually make the same mistake ourselves (bonus game: spot the swipe-typing typos I missed in this post; I'm sure there will be some).
But using generative AI also lowers the value of your work in another much more frightening way: in this era of hype, it demonstrates to your boss that you could be replaced by AI. The more you use it, and no matter how much you can see that your human skills are really necessary to correct its mistakes, the more it appears to your boss that they should hire the AI instead of you. Or perhaps retain 10% of the people in roles like yours to manage the AI doing the other 90% of the work. Paradoxically, the *more* you get done in terms of raw output using generative AI, the more it looks to your boss as if there's an opportunity to get enough work done with even fewer expensive humans. Of course, the decision to fire you and lean more heavily into AI isn't really a good one for long-term profits and success, but the modern boss did not get where they are by considering long-term profits. By using AI, you are merely demonstrating your redundancy, and the more you get done with it, the more redundant you seem.
In fact, there's even a third dimension to this: by using generative AI, you're also providing its purveyors with invaluable training data that allows them to make it better at replacing you. It's generally quite shitty right now, but the more use it gets by competent & clever people, the better it can become at the tasks those specific people use it for. Using the currently-popular algorithm family, there are limits to this; I'm not saying it will eventually transcend the mediocrity it's entwined with. But it can absolutely go from underwhelmingly mediocre to almost-reasonably mediocre with the right training data, and data from prompting sessions is both rarer and more useful than the base datasets it's built on.
For all of these reasons, using generative AI in your job is a mistake that will likely lead to your future unemployment. To reiterate, you should already not be using it because it is evil and causes specific and inexcusable harms, but in case like so many you just don't care about those harms, I've just explained to you why for entirely selfish reasons you should not use it.
If you're in a position where your boss is forcing you to use it, my condolences. I suggest leaning into its failures instead of trying to get the most out of it, and as much as possible, showing your boss very clearly how it wastes your time and makes things slower. Also, point out the dangers of legal liability for its mistakes, and make sure your boss is aware of the degree to which any of your AI-eager coworkers are producing low-quality work that harms organizational goals.
Also, if you've read this far and aren't yet of an anarchist mindset, I encourage you to think about the implications of firing 75% of (at least the white-collar) workforce in order to make more profit while fueling the climate crisis and in most cases also propping up dictatorial figureheads in government. When *either* the AI bubble bursts *or* if the techbros get to live out the beginnings of their worker-replacement fantasies, there are going to be an unimaginable number of economically desperate people living in increasingly expensive times. I'm the kind of optimist who thinks that the resulting social crucible, though perhaps through terrible violence, will lead to deep social changes that effectively unseat from power the ultra-rich that continue to drag us all down this destructive path, and I think its worth some thinking now about what you might want the succeeding stable social configuration to look like so you can advocate towards that during points of malleability.
As others have said more eloquently, generative AI *should* be a technology that makes human lives on average easier, and it would be were it developed & controlled by humanists. The only reason that it's not, is that it's developed and controlled by terrible greedy people who use their unfairly hoarded wealth to immiserate the rest of us in order to maintain their dominance. In the long run, for our very survival, we need to depose them, and I look forward to what the term "generative AI" will mean after that finally happens.

@pre@boing.world
2025-06-20 22:54:36
Content warning: Doctor Who - Future, why Billie?
:tardis:

There's a woman I know who, when she was pregnant, was very keen to hear the opinions of crystal diviners and homeopath medics on what sex her new baby would be but wouldn't let the ultrasound-scan technician that actually knows tells her because Spoilers.
On that note, I'm happy to watch #doctorWho #badWolf #tv

@tiotasram@kolektiva.social
2025-07-28 13:04:34

How popular media gets love wrong
Okay, so what exactly are the details of the "engineered" model of love from my previous post? I'll try to summarize my thoughts and the experiences they're built on.
1. "Love" can be be thought of like a mechanism that's built by two (or more) people. In this case, no single person can build the thing alone, to work it needs contributions from multiple people (I suppose self-love might be an exception to that). In any case, the builders can intentionally choose how they build (and maintain) the mechanism, they can build it differently to suit their particular needs/wants, and they will need to maintain and repair it over time to keep it running. It may need winding, or fuel, or charging plus oil changes and bolt-tightening, etc.
2. Any two (or more) people can choose to start building love between them at any time. No need to "find your soulmate" or "wait for the right person." Now the caveat is that the mechanism is difficult to build and requires lots of cooperation, so there might indeed be "wrong people" to try to build love with. People in general might experience more failures than successes. The key component is slowly-escalating shared commitment to the project, which is negotiated between the partners so that neither one feels like they've been left to do all the work themselves. Since it's a big scary project though, it's very easy to decide it's too hard and give up, and so the builders need to encourage each other and pace themselves. The project can only succeed if there's mutual commitment, and that will certainly require compromise (sometimes even sacrifice, though not always). If the mechanism works well, the benefits (companionship; encouragement; praise; loving sex; hugs; etc.) will be well worth the compromises you make to build it, but this isn't always the case.
3. The mechanism is prone to falling apart if not maintained. In my view, the "fire" and "appeal" models of love don't adequately convey the need for this maintenance and lead to a lot of under-maintained relationships many of which fall apart. You'll need to do things together that make you happy, do things that make your partner happy (in some cases even if they annoy you, but never in a transactional or box-checking way), spend time with shared attention, spend time alone and/or apart, reassure each other through words (or deeds) of mutual beliefs (especially your continued commitment to the relationship), do things that comfort and/or excite each other physically (anywhere from hugs to hand-holding to sex) and probably other things I'm not thinking of. Not *every* relationship needs *all* of these maintenance techniques, but I think most will need most. Note especially that patriarchy teaches men that they don't need to bother with any of this, which harms primarily their romantic partners but secondarily them as their relationships fail due to their own (cultivated-by-patriarchy) incompetence. If a relationship evolves to a point where one person is doing all the maintenance (& improvement) work, it's been bent into a shape that no longer really qualifies as "love" in my book, and that's super unhealthy.
4. The key things to negotiate when trying to build a new love are first, how to work together in the first place, and how to be comfortable around each others' habits (or how to change those habits). Second, what level of commitment you have right now, and what how/when you want to increase that commitment. Additionally, I think it's worth checking in about what you're each putting into and getting out of the relationship, to ensure that it continues to be positive for all participants. To build a successful relationship, you need to be able to incrementally increase the level of commitment to one that you're both comfortable staying at long-term, while ensuring that for both partners, the relationship is both a net benefit and has manageable costs (those two things are not the same). Obviously it's not easy to actually have conversations about these things (congratulations if you can just talk about this stuff) because there's a huge fear of hearing an answer that you don't want to hear. I think the range of discouraging answers which actually spell doom for a relationship is smaller than people think and there's usually a reasonable "shoulder" you can fall into where things aren't on a good trajectory but could be brought back into one, but even so these conversations are scary. Still, I think only having honest conversations about these things when you're angry at each other is not a good plan. You can also try to communicate some of these things via non-conversational means, if that feels safer, and at least being aware that these are the objectives you're pursuing is probably helpful.
I'll post two more replies here about my own experiences that led me to this mental model and trying to distill this into advice, although it will take me a moment to get to those.
#relationships #love