Microsoft bringt mit DragonV2.1Neural Stimmenfälschung auf Expertenniveau: Fürs perfekte Deepfake reicht nun ein halbes „Hallo, hier bin ich“. Aber keine Sorge, alles sicher – laut Nutzungsbedingungen und unhörbarem Wasserzeichen! Da kann ja nichts schiefgehen, oder? @…
ESDD 2026: Environmental Sound Deepfake Detection Challenge Evaluation Plan
Han Yin, Yang Xiao, Rohan Kumar Das, Jisheng Bai, Ting Dang
https://arxiv.org/abs/2508.04529 https://…
The "spicy" option on Grok's new generative AI video tool Imagine produces nude deepfakes of celebrities like Taylor Swift, even without explicit user prompting (Jess Weatherbed/The Verge)
https://www.theverge.com/report/718975/xai-grok-imag…
NE-PADD: Leveraging Named Entity Knowledge for Robust Partial Audio Deepfake Detection via Attention Aggregation
Huhong Xian, Rui Liu, Berrak Sisman, Haizhou Li
https://arxiv.org/abs/2509.03829
Fair Deepfake Detectors Can Generalize
Harry Cheng, Ming-Hui Liu, Yangyang Guo, Tianyi Wang, Liqiang Nie, Mohan Kankanhalli
https://arxiv.org/abs/2507.02645
Effect of AI Performance, Risk Perception, and Trust on Human Dependence in Deepfake Detection AI system
Yingfan Zhou, Ester Chen, Manasa Pisipati, Aiping Xiong, Sarah Rajtmajer
https://arxiv.org/abs/2508.01906
Deepfakes in Criminal Investigations: Interdisciplinary Research Directions for CMC Research
Lorenz Meinen, Astrid Schom\"acker, Stefanie Wiedemann, Markus Hartmann, Timo Speith, Lena K\"astner, Niklas K\"uhl, Christian R\"uckert
https://arxiv.org/abs/2507.03457

Deepfakes in Criminal Investigations: Interdisciplinary Research Directions for CMC Research
The emergence of deepfake technologies offers both opportunities and significant challenges. While commonly associated with deception, misinformation, and fraud, deepfakes may also enable novel applications in high-stakes contexts such as criminal investigations. However, these applications raise complex technological, ethical, and legal questions. We adopt an interdisciplinary approach, drawing on computer science, philosophy, and law, to examine what it takes to responsibly use deepfakes in c…
A whistleblower details Clothoff, an AI-powered nudify app that owns 10 similar services; Clothoff had 27M visitors in H1 2024 and produced 200K images daily (Spiegel Online)
https://www.spiegel.de/internationa…
Towards Reliable Audio Deepfake Attribution and Model Recognition: A Multi-Level Autoencoder-Based Framework
Andrea Di Pierno (IMT School of Advanced Studies), Luca Guarnera (University of Catania), Dario Allegra (University of Catania), Sebastiano Battiato (University of Catania)
https://arxiv.org/abs/2508.02521
Researchers at security giant CrowdStrike say they have seen hundreds of cases where
North Koreans posing as remote IT workers have infiltrated companies to generate money for the regime,
marking a sharp increase over previous years.
Per CrowdStrike’s latest threat-hunting report,
the company has identified more than 320 incidents over the past 12 months,
up by 220% from the year earlier,
in which North Koreans gained fraudulent employment at Western compa…
Try it. AI or "smart autocomplete" is getting better...
"A.I. Videos Have Never Been Better. Can You Tell What’s Real?"
https://www.nytimes.com/interactive/2025/0
Multi-Granularity Adaptive Time-Frequency Attention Framework for Audio Deepfake Detection under Real-World Communication Degradations
Haohan Shi, Xiyu Shi, Safak Dogan, Tianjin Huang, Yunxiao Zhang
https://arxiv.org/abs/2508.01467
Speech DF Arena: A Leaderboard for Speech DeepFake Detection Models
Sandipana Dowerah, Atharva Kulkarni, Ajinkya Kulkarni, Hoan My Tran, Joonas Kalda, Artem Fedorchenko, Benoit Fauve, Damien Lolive, Tanel Alum\"ae, Matthew Magimai Doss
https://arxiv.org/abs/2509.02859
HOLA: Enhancing Audio-visual Deepfake Detection via Hierarchical Contextual Aggregations and Efficient Pre-training
Xuecheng Wu, Danlei Huang, Heli Sun, Xinyi Yin, Yifan Wang, Hao Wang, Jia Zhang, Fei Wang, Peihao Guo, Suyu Xing, Junxiao Xue, Liang He
https://arxiv.org/abs/2507.22781
A federal judge struck down a California law blocking large platforms from hosting deceptive AI-generated content related to elections, citing Section 230 (Chase DiFeliciantonio/Politico)
https://www.politico.com/news/2025/08/05/elon-musk-x-cou…
Wir leben in einer Gesellschaft, in der eine Privatfirma keine Knöllchen an Falschparker verteilen darf, weil das eine originäre hoheitliche Aufgabe des staatlichen gewaltmonopols ist, der der staat aber kaum nachkommt, wo aber US-Oligarchen Urheberrechtsvetletzungen, Morddrohungen und Vergewaltigungsankündigungen in kommerziellen social media sites regulieren sollen, weil das dem staat und seinem gewaltmonopol sowas von egal ist, es sei denn es handelt sich um ein deepfake des kanzlers in dem …
Wir leben in einer Gesellschaft, in der eine Privatfirma keine Knöllchen an Falschparker verteilen darf, weil das eine originäre hoheitliche Aufgabe des staatlichen gewaltmonopols ist, der der staat aber kaum nachkommt, wo aber US-Oligarchen Urheberrechtsvetletzungen, Morddrohungen und Vergewaltigungsankündigungen in kommerziellen social media sites regulieren sollen, weil das dem staat und seinem gewaltmonopol sowas von egal ist, es sei denn es handelt sich um ein deepfake des kanzlers in dem …
Wav2DF-TSL: Two-stage Learning with Efficient Pre-training and Hierarchical Experts Fusion for Robust Audio Deepfake Detection
Yunqi Hao, Yihao Chen, Minqiang Xu, Jianbo Zhan, Liang He, Lei Fang, Sian Fang, Lin Liu
https://arxiv.org/abs/2509.04161
Generalizable Audio Deepfake Detection via Hierarchical Structure Learning and Feature Whitening in Poincar\'e sphere
Mingru Yang, Yanmei Gu, Qianhua He, Yanxiong Li, Peirong Zhang, Yongqiang Chen, Zhiming Wang, Huijia Zhu, Jian Liu, Weiqiang Wang
https://arxiv.org/abs/2508.01897
Watching the movie "G20" which came out a few months ago. The plot involves Bitcoin maxis taking world leaders hostage in order to take voice samples and deepfake social media videos to destabilise currencies (world leaders being notoriously difficult to get voice samples of).
Anyway, when the bad guy uploads the faked videos to social media (Instagram, VK, Facebook) you see that the list doesn't include Twitter/X, but does include Orkut - a network that was switched off …
Towards Trustworthy AI: Secure Deepfake Detection using CNNs and Zero-Knowledge Proofs
H M Mohaimanul Islam, Huynh Q. N. Vo, Aditya Rane
https://arxiv.org/abs/2507.17010 https:/…
AUDETER: A Large-scale Dataset for Deepfake Audio Detection in Open Worlds
Qizhou Wang, Hanxun Huang, Guansong Pang, Sarah Erfani, Christopher Leckie
https://arxiv.org/abs/2509.04345
"Interviewees should take note and always record their own version of a conversation in any hostile forum, although of course they could be accused of faking the real version!"
#DeepFake
#GenAI
Robust Localization of Partially Fake Speech: Metrics, Models, and Out-of-Domain Evaluation
Hieu-Thi Luong, Inbal Rimons, Haim Permuter, Kong Aik Lee, Eng Siong Chng
https://arxiv.org/abs/2507.03468
LayLens: Improving Deepfake Understanding through Simplified Explanations
Abhijeet Narang, Parul Gupta, Liuyijia Su, Abhinav Dhall
https://arxiv.org/abs/2507.10066
Multi-level SSL Feature Gating for Audio Deepfake Detection
Hoan My Tran, Damien Lolive, Aghilas Sini, Arnaud Delhay, Pierre-Fran\c{c}ois Marteau, David Guennec
https://arxiv.org/abs/2509.03409
Intergenerational Support for Deepfake Scams Targeting Older Adults
Karina LaRubbio, Alyssa Lanter, Seihyun Lee, Mahima Ramesh, Diana Freed
https://arxiv.org/abs/2508.11579 http…
"What do you expect? You're part of the internet": Analyzing Celebrities' Experiences as Usees of Deepfake Technology
John Twomey, Sarah Foley, Sarah Robinson, Michael Quayle, Matthew Peter Aylett, Conor Linehan, Gillian Murphy
https://arxiv.org/abs/2507.13065
Localizing Audio-Visual Deepfakes via Hierarchical Boundary Modeling
Xuanjun Chen, Shih-Peng Cheng, Jiawei Du, Lin Zhang, Xiaoxiao Miao, Chung-Che Wang, Haibin Wu, Hung-yi Lee, Jyh-Shing Roger Jang
https://arxiv.org/abs/2508.02000
Two things on this:
1 - To protect people from deepfakes has merit and is very, very needed. Urgently, even.
2 - Every single time people tried to use copyright law to do stuff copyright law is not intended to do, the results were catastrophic. No problems were solved that way, and new problems were created.
Stop it. Just stop.
Forgery Guided Learning Strategy with Dual Perception Network for Deepfake Cross-domain Detection
Lixin Jia, Zhiqing Guo, Gaobo Yang, Liejun Wang, Keqin Li
https://arxiv.org/abs/2508.10741
Collecting, Curating, and Annotating Good Quality Speech deepfake dataset for Famous Figures: Process and Challenges
Hashim Ali, Surya Subramani, Raksha Varahamurthy, Nithin Adupa, Lekha Bollinani, Hafiz Malik
https://arxiv.org/abs/2507.00324
Ein Gedanke, den ich nicht mehr loswerde, wenn ich Geschichten über alte Leute höre, die Opfer von Deepfake-Betrügern wurden: da sind massenweise Menschen dazu bereit, Geld zu bezahlen, damit ihr Kind oder ihr Enkelkind nicht ins Gefängnis kommt, weil es jemanden getötet hat. What? Ja, Enkeltrickbetrüger sind scheiße, aber was sind das für Menschen, die sagen "klar zahle ich Geld dafür, dass mein Kind, das gerade eine Straftat begangen hat, dafür nicht ins Gefängnis muss"? 1/x
Deepfake Technology Unveiled: The Commoditization of AI and Its Impact on Digital Trust
Claudiu Popa, Rex Pallath, Liam Cunningham, Hewad Tahiri, Abiram Kesavarajah, Tao Wu
https://arxiv.org/abs/2506.07363
SpeechFake: A Large-Scale Multilingual Speech Deepfake Dataset Incorporating Cutting-Edge Generation Methods
Wen Huang, Yanmei Gu, Zhiming Wang, Huijia Zhu, Yanmin Qian
https://arxiv.org/abs/2507.21463
Pay Less Attention to Deceptive Artifacts: Robust Detection of Compressed Deepfakes on Online Social Networks
Manyi Li, Renshuai Tao, Yufan Liu, Chuangchuang Tan, Haotong Qin, Bing Li, Yunchao Wei, Yao Zhao
https://arxiv.org/abs/2506.20548
Multilingual Dataset Integration Strategies for Robust Audio Deepfake Detection: A SAFE Challenge System
Hashim Ali, Surya Subramani, Lekha Bollinani, Nithin Sai Adupa, Sali El-Loh, Hafiz Malik
https://arxiv.org/abs/2508.20983
Crosslisted article(s) found for cs.CR. https://arxiv.org/list/cs.CR/new
[1/1]:
- Combating Digitally Altered Images: Deepfake Detection
Saksham Kumar, Rhythm Narang
Companies, including Google and Cisco, have reinstated in-person interviews for some roles to combat AI-driven cheating, with some using deepfake detection tech (Ray A. Smith/Wall Street Journal)
https://www.wsj.com/lifestyle/careers/ai-j
"He’s a walking, talking deepfake."
- Maureen Dowd, #NYT
$: #NY_Times #quote #paywall
A Comparative Study on Proactive and Passive Detection of Deepfake Speech
Chia-Hua Wu, Wanying Ge, Xin Wang, Junichi Yamagishi, Yu Tsao, Hsin-Min Wang
https://arxiv.org/abs/2506.14398
Fake Speech Wild: Detecting Deepfake Speech on Social Media Platform
Yuankun Xie, Ruibo Fu, Xiaopeng Wang, Zhiyong Wang, Ya Li, Zhengqi Wen, Haonnan Cheng, Long Ye
https://arxiv.org/abs/2508.10559
ClearMask: Noise-Free and Naturalness-Preserving Protection Against Voice Deepfake Attacks
Yuanda Wang, Bocheng Chen, Hanqing Guo, Guangjing Wang, Weikang Ding, Qiben Yan
https://arxiv.org/abs/2508.17660
Replaced article(s) found for cs.CR. https://arxiv.org/list/cs.CR/new
[2/2]:
- Towards Generalized Source Tracing for Codec-Based Deepfake Speech
Xuanjun Chen, I-Ming Lin, Lin Zhang, Haibin Wu, Hung-yi Lee, Jyh-Shing Roger Jang
Toward an African Agenda for AI Safety
Samuel T. Segun, Rachel Adams, Ana Florido, Scott Timcke, Jonathan Shock, Leah Junck, Fola Adeleke, Nicolas Grossman, Ayantola Alayande, Jerry John Kponyo, Matthew Smith, Dickson Marfo Fosu, Prince Dawson Tetteh, Juliet Arthur, Stephanie Kasaon, Odilile Ayodele, Laetitia Badolo, Paul Plantinga, Michael Gastrow, Sumaya Nur Adan, Joanna Wiaterek, Cecil Abungu, Kojo Apeagyei, Luise Eder, Tegawende Bissyande
FakeHunter: Multimodal Step-by-Step Reasoning for Explainable Video Forensics
Chen Chen, Runze Li, Zejun Zhang, Pukun Zhao, Fanqing Zhou, Longxiang Wang, Haojian Huang
https://arxiv.org/abs/2508.14581 …
Two Views, One Truth: Spectral and Self-Supervised Features Fusion for Robust Speech Deepfake Detection
Yassine El Kheir, Arnab Das, Enes Erdem Erdogan, Fabian Ritter-Guttierez, Tim Polzehl, Sebastian M\"oller
https://arxiv.org/abs/2507.20417
From Sharpness to Better Generalization for Speech Deepfake Detection
Wen Huang, Xuechen Liu, Xin Wang, Junichi Yamagishi, Yanmin Qian
https://arxiv.org/abs/2506.11532
LENS-DF: Deepfake Detection and Temporal Localization for Long-Form Noisy Speech
Xuechen Liu, Wanying Ge, Xin Wang, Junichi Yamagishi
https://arxiv.org/abs/2507.16220
When Deepfakes Look Real: Detecting AI-Generated Faces with Unlabeled Data due to Annotation Challenges
Zhiqiang Yang, Renshuai Tao, Xiaolong Zheng, Guodong Yang, Chunjie Zhang
https://arxiv.org/abs/2508.09022
Perturbed Public Voices (P$^{2}$V): A Dataset for Robust Audio Deepfake Detection
Chongyang Gao, Marco Postiglione, Isabel Gortner, Sarit Kraus, V. S. Subrahmanian
https://arxiv.org/abs/2508.10949
Generalizable Audio Spoofing Detection using Non-Semantic Representations
Arnab Das, Yassine El Kheir, Carlos Franzreb, Tim Herzig, Tim Polzehl, Sebastian M\"oller
https://arxiv.org/abs/2509.00186
SCDF: A Speaker Characteristics DeepFake Speech Dataset for Bias Analysis
Vojt\v{e}ch Stan\v{e}k, Karel Srna, Anton Firc, Kamil Malinka
https://arxiv.org/abs/2508.07944 https://…
Replaced article(s) found for cs.MM. https://arxiv.org/list/cs.MM/new
[1/1]:
- A Survey on Speech Deepfake Detection
Menglu Li, Yasaman Ahmadiadli, Xiao-Ping Zhang
…
Fake-Mamba: Real-Time Speech Deepfake Detection Using Bidirectional Mamba as Self-Attention's Alternative
Xi Xuan, Zimo Zhu, Wenxin Zhang, Yi-Cheng Lin, Tomi Kinnunen
https://arxiv.org/abs/2508.09294
SHIELD: A Secure and Highly Enhanced Integrated Learning for Robust Deepfake Detection against Adversarial Attacks
Kutub Uddin, Awais Khan, Muhammad Umar Farooq, Khalid Malik
https://arxiv.org/abs/2507.13170
Phoneme-Level Analysis for Person-of-Interest Speech Deepfake Detection
Davide Salvi, Viola Negroni, Sara Mandelli, Paolo Bestagini, Stefano Tubaro
https://arxiv.org/abs/2507.08626
Multimodal Zero-Shot Framework for Deepfake Hate Speech Detection in Low-Resource Languages
Rishabh Ranjan, Likhith Ayinala, Mayank Vatsa, Richa Singh
https://arxiv.org/abs/2506.08372
Towards Scalable AASIST: Refining Graph Attention for Speech Deepfake Detection
Ivan Viakhirev, Daniil Sirota, Aleksandr Smirnov, Kirill Borodin
https://arxiv.org/abs/2507.11777
Replaced article(s) found for eess.AS. https://arxiv.org/list/eess.AS/new
[1/1]:
- Generalizable speech deepfake detection via meta-learned LoRA
Janne Laakkonen, Ivan Kukanov, Ville Hautam\"aki
Crosslisted article(s) found for eess.AS. https://arxiv.org/list/eess.AS/new
[1/1]:
- Perturbed Public Voices (P$^{2}$V): A Dataset for Robust Audio Deepfake Detection
Chongyang Gao, Marco Postiglione, Isabel Gortner, Sarit Kraus, V. S. Subrahmanian
Enkidu: Universal Frequential Perturbation for Real-Time Audio Privacy Protection against Voice Deepfakes
Zhou Feng, Jiahao Chen, Chunyi Zhou, Yuwen Pu, Qingming Li, Tianyu Du, Shouling Ji
https://arxiv.org/abs/2507.12932
Replaced article(s) found for eess.AS. https://arxiv.org/list/eess.AS/new
[1/1]:
- A Survey on Speech Deepfake Detection
Menglu Li, Yasaman Ahmadiadli, Xiao-Ping Zhang
Replaced article(s) found for cs.SD. https://arxiv.org/list/cs.SD/new
[1/1]:
- A Survey on Speech Deepfake Detection
Menglu Li, Yasaman Ahmadiadli, Xiao-Ping Zhang
…