Tootfinder

Opt-in global Mastodon full text search. Join the index!

@netzschleuder@social.skewed.de
2025-11-12 13:00:04

celegansneural: C. elegans neurons (1986)
A network representing the neural connections of the Caenorhabditis elegans nematode.
This network has 297 nodes and 2359 edges.
Tags: Biological, Connectome, Weighted
networks.skewed.de/net/celegan
Rid…

celegansneural: C. elegans neurons (1986). 297 nodes, 2359 edges. https://networks.skewed.de/net/celegansneural
@arXiv_statML_bot@mastoxiv.page
2025-11-13 13:06:32

Replaced article(s) found for stat.ML. arxiv.org/list/stat.ML/new
[2/2]:
- Differentiable, Bit-shifting, and Scalable Quantization without training neural network from scratch
Zia Badar

@seeingwithsound@mas.to
2025-10-28 18:27:10

Triangular neural synchronization patterns in visual impairment: A comprehensive case series exploring multi-node network dynamics and the Neural Triangle Index (NTI)

@netzschleuder@social.skewed.de
2025-11-06 19:00:04

macaque_neural: Macaque cortical connectivity (Young)
A network of cortical regions in the Macaque cortex.
This network has 47 nodes and 505 edges.
Tags: Biological, Connectome, Unweighted
networks.skewed.de/net/macaque
Ridiculogram:

macaque_neural: Macaque cortical connectivity (Young). 47 nodes, 505 edges. https://networks.skewed.de/net/macaque_neural
@UP8@mastodon.social
2025-11-09 22:06:11

⚡ Team develops high-speed, ultra-low-power superconductive neuron device
#electronics

@arXiv_qbioNC_bot@mastoxiv.page
2025-12-10 13:12:59

Replaced article(s) found for q-bio.NC. arxiv.org/list/q-bio.NC/new
[1/1]:
- How random connectivity shapes the fluctuating dynamics of finite-size neural populations
Nils E. Greven, Jonas Ranft, Tilo Schwalger
arxiv.org/abs/2412.16111 mastoxiv.page/@arXiv_qbioNC_bo
- Feature Integration Spaces: Joint Training Reveals Dual Encoding in Neural Network Representations
Omar Claflin
arxiv.org/abs/2507.00269 mastoxiv.page/@arXiv_qbioNC_bo
- Surface Waves and Axoplasmic Pressure Waves in Action Potential Propagation: Fundamentally Differ...
Marat M. Rvachev, Benjamin Drukarch
arxiv.org/abs/2505.24580 mastoxiv.page/@arXiv_physicsbi
toXiv_bot_toot

@netzschleuder@social.skewed.de
2026-01-10 01:00:04

celegansneural: C. elegans neurons (1986)
A network representing the neural connections of the Caenorhabditis elegans nematode.
This network has 297 nodes and 2359 edges.
Tags: Biological, Connectome, Weighted
networks.skewed.de/net/celegan
Rid…

celegansneural: C. elegans neurons (1986). 297 nodes, 2359 edges. https://networks.skewed.de/net/celegansneural
@arXiv_csLG_bot@mastoxiv.page
2025-10-15 10:52:01

Topological Signatures of ReLU Neural Network Activation Patterns
Vicente Bosca, Tatum Rask, Sunia Tanweer, Andrew R. Tawfeek, Branden Stone
arxiv.org/abs/2510.12700

@netzschleuder@social.skewed.de
2025-11-09 22:00:04

celegansneural: C. elegans neurons (1986)
A network representing the neural connections of the Caenorhabditis elegans nematode.
This network has 297 nodes and 2359 edges.
Tags: Biological, Connectome, Weighted
networks.skewed.de/net/celegan
Rid…

celegansneural: C. elegans neurons (1986). 297 nodes, 2359 edges. https://networks.skewed.de/net/celegansneural
@arXiv_quantph_bot@mastoxiv.page
2025-10-15 10:19:41

Hybrid Vision Transformer and Quantum Convolutional Neural Network for Image Classification
Mingzhu Wang, Yun Shang
arxiv.org/abs/2510.12291

@netzschleuder@social.skewed.de
2025-11-02 05:00:04

macaque_neural: Macaque cortical connectivity (Young)
A network of cortical regions in the Macaque cortex.
This network has 47 nodes and 505 edges.
Tags: Biological, Connectome, Unweighted
networks.skewed.de/net/macaque
Ridiculogram:

macaque_neural: Macaque cortical connectivity (Young). 47 nodes, 505 edges. https://networks.skewed.de/net/macaque_neural
@pbloem@sigmoid.social
2025-11-28 15:28:56

I need to read it properly, but this looks 🔥 arxiv.org/abs/2511.16652

@arXiv_csNI_bot@mastoxiv.page
2025-10-14 10:39:58

Network-Optimised Spiking Neural Network (NOS) Scheduling for 6G O-RAN: Spectral Margin and Delay-Tail Control
Muhammad Bilal, Xiaolong Xu
arxiv.org/abs/2510.11291

@netzschleuder@social.skewed.de
2025-12-01 12:00:04

macaque_neural: Macaque cortical connectivity (Young)
A network of cortical regions in the Macaque cortex.
This network has 47 nodes and 505 edges.
Tags: Biological, Connectome, Unweighted
networks.skewed.de/net/macaque
Ridiculogram:

macaque_neural: Macaque cortical connectivity (Young). 47 nodes, 505 edges. https://networks.skewed.de/net/macaque_neural
@arXiv_csCV_bot@mastoxiv.page
2025-10-15 08:13:52

PanoTPS-Net: Panoramic Room Layout Estimation via Thin Plate Spline Transformation
Hatem Ibrahem, Ahmed Salem, Qinmin Vivian Hu, Guanghui Wang
arxiv.org/abs/2510.11992

@stefanlaser@social.tchncs.de
2025-10-21 06:53:37

I like to play around as an anonymous commenter in online newspaper columns. If you point out the biases of #AI systems, the comment gets deleted because it is considered too polemical.
The comment was addressing an article about AI in public service and the use in refugee applications 🫣

A quick chat with ChatGPT itself: asked about bias in training and inference, it agrees. It's not traceable; "the exact causal pathways inside a deep neural network remain largely opaque to human understanding." It's never fully decodable. Not that we can trust this very output.
@arXiv_eessSP_bot@mastoxiv.page
2025-10-14 11:12:28

WiNPA: Wireless Neural Processing Architecture
Sai Xu, Yanan Du
arxiv.org/abs/2510.11150 arxiv.org/pdf/2510.11150

@arXiv_eessSY_bot@mastoxiv.page
2025-10-14 09:06:28

Latent-Feature-Informed Neural ODE Modeling for Lightweight Stability Evaluation of Black-box Grid-Tied Inverters
Jialin Zheng, Zhong Liu, Xiaonan Lu
arxiv.org/abs/2510.09826

@arXiv_eessIV_bot@mastoxiv.page
2025-10-15 08:27:02

LiteVPNet: A Lightweight Network for Video Encoding Control in Quality-Critical Applications
Vibhoothi Vibhoothi, Fran\c{c}ois Piti\'e, Anil Kokaram
arxiv.org/abs/2510.12379

@arXiv_csCE_bot@mastoxiv.page
2025-10-14 09:05:08

Comparative Evaluation of Neural Network Architectures for Generalizable Human Spatial Preference Prediction in Unseen Built Environments
Maral Doctorarastoo, Katherine A. Flanigan, Mario Berg\'es, Christopher McComb
arxiv.org/abs/2510.10954

@arXiv_physicsinsdet_bot@mastoxiv.page
2025-10-14 10:26:58

Optimised neural networks for online processing of ATLAS calorimeter data on FPGAs
Georges Aad, Raphael Bertrand, Lauri Laatu, Emmanuel Monnier, Arno Straessner, Nairit Sur, Johann C. Voigt
arxiv.org/abs/2510.11469

@arXiv_astrophIM_bot@mastoxiv.page
2025-10-14 10:55:48

Slitless Spectroscopy Source Detection Using YOLO Deep Neural Network
Xiaohan Chen, Man I Lam, Yingying Zhou, Hongrui Gu, Jinzhi Lai, Zhou Fan, Jing Li, Xin Zhang, Hao Tian
arxiv.org/abs/2510.10922

@seeingwithsound@mas.to
2025-10-27 19:08:26

Neural network topologies supporting individual variations in vividness of visual imagery sciencedirect.com/science/arti

@UP8@mastodon.social
2025-10-31 00:13:17

💫 Fast frequency reconstruction using Deep Learning for event recognition in ring laser data
#laser

Four time series charts showing the horizontal and vertical motion detected by both a conventional seismograph and a ring laser gyroscope that all look just about the same
@arXiv_eessAS_bot@mastoxiv.page
2025-10-14 08:56:08

Dynamically Slimmable Speech Enhancement Network with Metric-Guided Training
Haixin Zhao, Kaixuan Yang, Nilesh Madhu
arxiv.org/abs/2510.11395

@netzschleuder@social.skewed.de
2025-12-24 17:00:04

macaque_neural: Macaque cortical connectivity (Young)
A network of cortical regions in the Macaque cortex.
This network has 47 nodes and 505 edges.
Tags: Biological, Connectome, Unweighted
networks.skewed.de/net/macaque
Ridiculogram:

macaque_neural: Macaque cortical connectivity (Young). 47 nodes, 505 edges. https://networks.skewed.de/net/macaque_neural
@arXiv_csRO_bot@mastoxiv.page
2025-10-15 09:22:41

Pretraining in Actor-Critic Reinforcement Learning for Robot Motion Control
Jiale Fan, Andrei Cramariuc, Tifanny Portela, Marco Hutter
arxiv.org/abs/2510.12363

@netzschleuder@social.skewed.de
2025-11-20 22:00:03

macaque_neural: Macaque cortical connectivity (Young)
A network of cortical regions in the Macaque cortex.
This network has 47 nodes and 505 edges.
Tags: Biological, Connectome, Unweighted
networks.skewed.de/net/macaque
Ridiculogram:

macaque_neural: Macaque cortical connectivity (Young). 47 nodes, 505 edges. https://networks.skewed.de/net/macaque_neural
@arXiv_csLG_bot@mastoxiv.page
2025-10-14 16:39:22

Crosslisted article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[6/7]:
- Network-Optimised Spiking Neural Network (NOS) Scheduling for 6G O-RAN: Spectral Margin and Delay...
Muhammad Bilal, Xiaolong Xu

@arXiv_physicsoptics_bot@mastoxiv.page
2025-11-25 18:17:39

Replaced article(s) found for physics.optics. arxiv.org/list/physics.optics/
[1/1]:
- LLM4Laser: Large Language Models Automate the Design of Lasers
Renjie Li, Ceyao Zhang, Sixuan Mao, Xiyuan Zhou, Feng Yin, Sergios Theodoridis, Zhaoyu Zhang
arxiv.org/abs/2104.12145
- Room-temperature valley-selective emission in Si-MoSe2 heterostructures enabled by high-quality-f...
Feng Pan, et al.
arxiv.org/abs/2409.09806 mastoxiv.page/@arXiv_physicsop
- 1T'-MoTe$_2$ as an integrated saturable absorber for photonic machine learning
Maria Carolina Volpato, Henrique G. Rosa, Tom Reep, Pierre-Louis de Assis, Newton Cesario Frateschi
arxiv.org/abs/2507.16140 mastoxiv.page/@arXiv_physicsop
- NeOTF: Guidestar-free neural representation for broadband dynamic imaging through scattering
Yunong Sun, Fei Xia
arxiv.org/abs/2507.22328 mastoxiv.page/@arXiv_physicsop
- Structured Random Models for Phase Retrieval with Optical Diffusers
Zhiyuan Hu, Fakhriyya Mammadova, Juli\'an Tachella, Michael Unser, Jonathan Dong
arxiv.org/abs/2510.14490 mastoxiv.page/@arXiv_physicsop
- Memory Effects in Time-Modulated Radiative Heat Transfer
Riccardo Messina, Philippe Ben-Abdallah
arxiv.org/abs/2510.19378 mastoxiv.page/@arXiv_physicsop
- Mie-tronics supermodes and symmetry breaking in nonlocal metasurfaces
Thanh Xuan Hoang, Ayan Nussupbekov, Jie Ji, Daniel Leykam, Jaime Gomez Rivas, Yuri Kivshar
arxiv.org/abs/2511.03560 mastoxiv.page/@arXiv_physicsop
- Integrated soliton microcombs beyond the turnkey limit
Wang, Xu, Wang, Zhu, Luo, Luo, Wang, Ni, Yang, Gong, Xiao, Li, Yang
arxiv.org/abs/2511.06909 mastoxiv.page/@arXiv_physicsop
- Ising accelerator with a reconfigurable interferometric photonic processor
Rausell-Campo, Al Kayed, P\'erez-L\'ppez, Aadhi, Shastri, Francoy
arxiv.org/abs/2511.13284 mastoxiv.page/@arXiv_physicsop
- Superradiance in dense atomic samples
I. M. de Ara\'ujo, H. Sanchez, L. F. Alves da Silva, M. H. Y. Moussa
arxiv.org/abs/2504.20242 mastoxiv.page/@arXiv_quantph_b
- Fluctuation-induced Hall-like lateral forces in a chiral-gain environment
Daigo Oue, M\'ario G. Silveirinha
arxiv.org/abs/2507.14754 mastoxiv.page/@arXiv_condmatme
- Tensor-network approach to quantum optical state evolution beyond the Fock basis
Nikolay Kapridov, Egor Tiunov, Dmitry Chermoshentsev
arxiv.org/abs/2511.15295 mastoxiv.page/@arXiv_quantph_b
- OmniLens : Blind Lens Aberration Correction via Large LensLib Pre-Training and Latent PSF Repres...
Jiang, Qian, Gao, Sun, Yang, Yi, Li, Yang, Van Gool, Wang
arxiv.org/abs/2511.17126 mastoxiv.page/@arXiv_eessIV_bo
toXiv_bot_toot

@arXiv_csNI_bot@mastoxiv.page
2025-10-14 09:43:08

Graph Neural Network-Based Multicast Routing for On-Demand Streaming Services in 6G Networks
Xiucheng Wang, Zien Wang, Nan Cheng, Wenchao Xu, Wei Quan, Xuemin Shen
arxiv.org/abs/2510.11109

@arXiv_statML_bot@mastoxiv.page
2025-10-15 09:58:02

Compressibility Measures Complexity: Minimum Description Length Meets Singular Learning Theory
Einar Urdshals, Edmund Lau, Jesse Hoogland, Stan van Wingerden, Daniel Murfet
arxiv.org/abs/2510.12077

@arXiv_eessSY_bot@mastoxiv.page
2025-10-14 09:58:58

Bounds of Validity for Bifurcations of Equilibria in a Class of Networked Dynamical Systems
Pranav Gupta, Ravi Banavar, Anastasia Bizyaeva
arxiv.org/abs/2510.10215

@netzschleuder@social.skewed.de
2025-11-15 16:00:04

macaque_neural: Macaque cortical connectivity (Young)
A network of cortical regions in the Macaque cortex.
This network has 47 nodes and 505 edges.
Tags: Biological, Connectome, Unweighted
networks.skewed.de/net/macaque
Ridiculogram:

macaque_neural: Macaque cortical connectivity (Young). 47 nodes, 505 edges. https://networks.skewed.de/net/macaque_neural
@arXiv_physicschemph_bot@mastoxiv.page
2025-10-15 12:57:06

Replaced article(s) found for physics.chem-ph. arxiv.org/list/physics.chem-ph
[1/1]:
- Accelerating Molecular Dynamics Simulations with Foundation Neural Network Models using Multiple ...
Cattin, Pl\'e, Adjoua, Gouraud, Lagard\`ere, Piquemal

@netzschleuder@social.skewed.de
2025-12-24 20:00:04

celegansneural: C. elegans neurons (1986)
A network representing the neural connections of the Caenorhabditis elegans nematode.
This network has 297 nodes and 2359 edges.
Tags: Biological, Connectome, Weighted
networks.skewed.de/net/celegan
Rid…

celegansneural: C. elegans neurons (1986). 297 nodes, 2359 edges. https://networks.skewed.de/net/celegansneural
@arXiv_qbioNC_bot@mastoxiv.page
2025-10-15 08:49:02

Non-linear associations of amyloid-$\beta$ with resting-state functional networks and their cognitive relevance in a large community-based cohort of cognitively normal older adults
Junjie Wu, Benjamin B Risk, Taylor A James, Nicholas Seyfried, David W Loring, Felicia C Goldstein, Allan I Levey, James J Lah, Deqiang Qiu
arxiv.org/ab…

@arXiv_physicsoptics_bot@mastoxiv.page
2025-10-15 10:08:51

Wavefront Coding for Accommodation-Invariant Near-Eye Displays
Ugur Akpinar, Erdem Sahin, Tina M. Hayward, Apratim Majumder, Rajesh Menon, Atanas Gotchev
arxiv.org/abs/2510.12778

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 10:33:20

Can You Hear Me Now? A Benchmark for Long-Range Graph Propagation
Luca Miglior, Matteo Tolloso, Alessio Gravina, Davide Bacciu
arxiv.org/abs/2512.17762 arxiv.org/pdf/2512.17762 arxiv.org/html/2512.17762
arXiv:2512.17762v1 Announce Type: new
Abstract: Effectively capturing long-range interactions remains a fundamental yet unresolved challenge in graph neural network (GNN) research, critical for applications across diverse fields of science. To systematically address this, we introduce ECHO (Evaluating Communication over long HOps), a novel benchmark specifically designed to rigorously assess the capabilities of GNNs in handling very long-range graph propagation. ECHO includes three synthetic graph tasks, namely single-source shortest paths, node eccentricity, and graph diameter, each constructed over diverse and structurally challenging topologies intentionally designed to introduce significant information bottlenecks. ECHO also includes two real-world datasets, ECHO-Charge and ECHO-Energy, which define chemically grounded benchmarks for predicting atomic partial charges and molecular total energies, respectively, with reference computations obtained at the density functional theory (DFT) level. Both tasks inherently depend on capturing complex long-range molecular interactions. Our extensive benchmarking of popular GNN architectures reveals clear performance gaps, emphasizing the difficulty of true long-range propagation and highlighting design choices capable of overcoming inherent limitations. ECHO thereby sets a new standard for evaluating long-range information propagation, also providing a compelling example for its need in AI for science.
toXiv_bot_toot

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 10:32:50

Spatially-informed transformers: Injecting geostatistical covariance biases into self-attention for spatio-temporal forecasting
Yuri Calleo
arxiv.org/abs/2512.17696 arxiv.org/pdf/2512.17696 arxiv.org/html/2512.17696
arXiv:2512.17696v1 Announce Type: new
Abstract: The modeling of high-dimensional spatio-temporal processes presents a fundamental dichotomy between the probabilistic rigor of classical geostatistics and the flexible, high-capacity representations of deep learning. While Gaussian processes offer theoretical consistency and exact uncertainty quantification, their prohibitive computational scaling renders them impractical for massive sensor networks. Conversely, modern transformer architectures excel at sequence modeling but inherently lack a geometric inductive bias, treating spatial sensors as permutation-invariant tokens without a native understanding of distance. In this work, we propose a spatially-informed transformer, a hybrid architecture that injects a geostatistical inductive bias directly into the self-attention mechanism via a learnable covariance kernel. By formally decomposing the attention structure into a stationary physical prior and a non-stationary data-driven residual, we impose a soft topological constraint that favors spatially proximal interactions while retaining the capacity to model complex dynamics. We demonstrate the phenomenon of ``Deep Variography'', where the network successfully recovers the true spatial decay parameters of the underlying process end-to-end via backpropagation. Extensive experiments on synthetic Gaussian random fields and real-world traffic benchmarks confirm that our method outperforms state-of-the-art graph neural networks. Furthermore, rigorous statistical validation confirms that the proposed method delivers not only superior predictive accuracy but also well-calibrated probabilistic forecasts, effectively bridging the gap between physics-aware modeling and data-driven learning.
toXiv_bot_toot

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 11:50:43

Crosslisted article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[3/3]:
- Fraud detection in credit card transactions using Quantum-Assisted Restricted Boltzmann Machines
Jo\~ao Marcos Cavalcanti de Albuquerque Neto, Gustavo Castro do Amaral, Guilherme Penello Tempor\~ao
arxiv.org/abs/2512.17660 mastoxiv.page/@arXiv_quantph_b
- Vidarc: Embodied Video Diffusion Model for Closed-loop Control
Feng, Xiang, Mao, Tan, Zhang, Huang, Zheng, Liu, Su, Zhu
arxiv.org/abs/2512.17661 mastoxiv.page/@arXiv_csRO_bot/
- Imputation Uncertainty in Interpretable Machine Learning Methods
Pegah Golchian, Marvin N. Wright
arxiv.org/abs/2512.17689 mastoxiv.page/@arXiv_statML_bo
- Revisiting the Broken Symmetry Phase of Solid Hydrogen: A Neural Network Variational Monte Carlo ...
Shengdu Chai, Chen Lin, Xinyang Dong, Yuqiang Li, Wanli Ouyang, Lei Wang, X. C. Xie
arxiv.org/abs/2512.17703 mastoxiv.page/@arXiv_condmatst
- Breast Cancer Neoadjuvant Chemotherapy Treatment Response Prediction Using Aligned Longitudinal M...
Rahul Ravi, Ruizhe Li, Tarek Abdelfatah, Stephen Chan, Xin Chen
arxiv.org/abs/2512.17759 mastoxiv.page/@arXiv_eessIV_bo
- MedNeXt-v2: Scaling 3D ConvNeXts for Large-Scale Supervised Representation Learning in Medical Im...
Roy, Kirchhoff, Ulrich, Rokuss, Wald, Isensee, Maier-Hein
arxiv.org/abs/2512.17774 mastoxiv.page/@arXiv_eessIV_bo
- Domain-Aware Quantum Circuit for QML
Gurinder Singh, Thaddeus Pellegrini, Kenneth M. Merz, Jr
arxiv.org/abs/2512.17800 mastoxiv.page/@arXiv_quantph_b
- Visually Prompted Benchmarks Are Surprisingly Fragile
Feng, Lian, Dunlap, Shu, Wang, Wang, Darrell, Suhr, Kanazawa
arxiv.org/abs/2512.17875 mastoxiv.page/@arXiv_csCV_bot/
- Learning vertical coordinates via automatic differentiation of a dynamical core
Tim Whittaker, Seth Taylor, Elsa Cardoso-Bihlo, Alejandro Di Luca, Alex Bihlo
arxiv.org/abs/2512.17877 mastoxiv.page/@arXiv_physicsao
- RadarGen: Automotive Radar Point Cloud Generation from Cameras
Tomer Borreda, Fangqiang Ding, Sanja Fidler, Shengyu Huang, Or Litany
arxiv.org/abs/2512.17897 mastoxiv.page/@arXiv_csCV_bot/
- Distributionally Robust Imitation Learning: Layered Control Architecture for Certifiable Autonomy
Gahlawat, Aboudonia, Banik, Hovakimyan, Matni, Ames, Zardini, Speranzon
arxiv.org/abs/2512.17899 mastoxiv.page/@arXiv_eessSY_bo
- Re-Depth Anything: Test-Time Depth Refinement via Self-Supervised Re-lighting
Ananta R. Bhattarai, Helge Rhodin
arxiv.org/abs/2512.17908 mastoxiv.page/@arXiv_csCV_bot/
toXiv_bot_toot

@arXiv_csLG_bot@mastoxiv.page
2025-12-22 13:54:35

Replaced article(s) found for cs.LG. arxiv.org/list/cs.LG/new
[2/5]:
- The Diffusion Duality
Sahoo, Deschenaux, Gokaslan, Wang, Chiu, Kuleshov
arxiv.org/abs/2506.10892 mastoxiv.page/@arXiv_csLG_bot/
- Multimodal Representation Learning and Fusion
Jin, Ge, Xie, Luo, Song, Bi, Liang, Guan, Yeong, Song, Hao
arxiv.org/abs/2506.20494 mastoxiv.page/@arXiv_csLG_bot/
- The kernel of graph indices for vector search
Mariano Tepper, Ted Willke
arxiv.org/abs/2506.20584 mastoxiv.page/@arXiv_csLG_bot/
- OptScale: Probabilistic Optimality for Inference-time Scaling
Youkang Wang, Jian Wang, Rubing Chen, Xiao-Yong Wei
arxiv.org/abs/2506.22376 mastoxiv.page/@arXiv_csLG_bot/
- Boosting Revisited: Benchmarking and Advancing LP-Based Ensemble Methods
Fabian Akkerman, Julien Ferry, Christian Artigues, Emmanuel Hebrard, Thibaut Vidal
arxiv.org/abs/2507.18242 mastoxiv.page/@arXiv_csLG_bot/
- MolMark: Safeguarding Molecular Structures through Learnable Atom-Level Watermarking
Runwen Hu, Peilin Chen, Keyan Ding, Shiqi Wang
arxiv.org/abs/2508.17702 mastoxiv.page/@arXiv_csLG_bot/
- Dual-Distilled Heterogeneous Federated Learning with Adaptive Margins for Trainable Global Protot...
Fatema Siddika, Md Anwar Hossen, Wensheng Zhang, Anuj Sharma, Juan Pablo Mu\~noz, Ali Jannesari
arxiv.org/abs/2508.19009 mastoxiv.page/@arXiv_csLG_bot/
- STDiff: A State Transition Diffusion Framework for Time Series Imputation in Industrial Systems
Gary Simethy, Daniel Ortiz-Arroyo, Petar Durdevic
arxiv.org/abs/2508.19011 mastoxiv.page/@arXiv_csLG_bot/
- EEGDM: Learning EEG Representation with Latent Diffusion Model
Shaocong Wang, Tong Liu, Yihan Li, Ming Li, Kairui Wen, Pei Yang, Wenqi Ji, Minjing Yu, Yong-Jin Liu
arxiv.org/abs/2508.20705 mastoxiv.page/@arXiv_csLG_bot/
- Data-Free Continual Learning of Server Models in Model-Heterogeneous Cloud-Device Collaboration
Xiao Zhang, Zengzhe Chen, Yuan Yuan, Yifei Zou, Fuzhen Zhuang, Wenyu Jiao, Yuke Wang, Dongxiao Yu
arxiv.org/abs/2509.25977 mastoxiv.page/@arXiv_csLG_bot/
- Fine-Tuning Masked Diffusion for Provable Self-Correction
Jaeyeon Kim, Seunggeun Kim, Taekyun Lee, David Z. Pan, Hyeji Kim, Sham Kakade, Sitan Chen
arxiv.org/abs/2510.01384 mastoxiv.page/@arXiv_csLG_bot/
- A Generic Machine Learning Framework for Radio Frequency Fingerprinting
Alex Hiles, Bashar I. Ahmad
arxiv.org/abs/2510.09775 mastoxiv.page/@arXiv_csLG_bot/
- ASecond-Order SpikingSSM for Wearables
Kartikay Agrawal, Abhijeet Vikram, Vedant Sharma, Vaishnavi Nagabhushana, Ayon Borthakur
arxiv.org/abs/2510.14386 mastoxiv.page/@arXiv_csLG_bot/
- Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning
Heming Zou, Yixiu Mao, Yun Qu, Qi Wang, Xiangyang Ji
arxiv.org/abs/2510.16882 mastoxiv.page/@arXiv_csLG_bot/
- Seeing Structural Failure Before it Happens: An Image-Based Physics-Informed Neural Network (PINN...
Omer Jauhar Khan, Sudais Khan, Hafeez Anwar, Shahzeb Khan, Shams Ul Arifeen
arxiv.org/abs/2510.23117 mastoxiv.page/@arXiv_csLG_bot/
- Training Deep Physics-Informed Kolmogorov-Arnold Networks
Spyros Rigas, Fotios Anagnostopoulos, Michalis Papachristou, Georgios Alexandridis
arxiv.org/abs/2510.23501 mastoxiv.page/@arXiv_csLG_bot/
- Semi-Supervised Preference Optimization with Limited Feedback
Seonggyun Lee, Sungjun Lim, Seojin Park, Soeun Cheon, Kyungwoo Song
arxiv.org/abs/2511.00040 mastoxiv.page/@arXiv_csLG_bot/
- Towards Causal Market Simulators
Dennis Thumm, Luis Ontaneda Mijares
arxiv.org/abs/2511.04469 mastoxiv.page/@arXiv_csLG_bot/
- Incremental Generation is Necessary and Sufficient for Universality in Flow-Based Modelling
Hossein Rouhvarzi, Anastasis Kratsios
arxiv.org/abs/2511.09902 mastoxiv.page/@arXiv_csLG_bot/
- Optimizing Mixture of Block Attention
Guangxuan Xiao, Junxian Guo, Kasra Mazaheri, Song Han
arxiv.org/abs/2511.11571 mastoxiv.page/@arXiv_csLG_bot/
- Assessing Automated Fact-Checking for Medical LLM Responses with Knowledge Graphs
Shasha Zhou, Mingyu Huang, Jack Cole, Charles Britton, Ming Yin, Jan Wolber, Ke Li
arxiv.org/abs/2511.12817 mastoxiv.page/@arXiv_csLG_bot/
toXiv_bot_toot