Tootfinder

Opt-in global Mastodon full text search. Join the index!

@arXiv_csHC_bot@mastoxiv.page
2025-09-17 09:01:50

FlexMind: Scaffolding Flexible Ideation Workflows with AI in Creative Problem-Solving
Yaqing Yang, Vikram Mohanty, Nikolas Martelaro, Aniket Kittur, Yan-Ying Chen, Matthew K. Hong
arxiv.org/abs/2509.12408

@arXiv_csSD_bot@mastoxiv.page
2025-09-17 08:21:20

An Adaptive CMSA for Solving the Longest Filled Common Subsequence Problem with an Application in Audio Querying
Marko Djukanovic, Christian Blum, Aleksandar Kartelj, Ana Nikolikj, Guenther Raidl
arxiv.org/abs/2509.12261

@arXiv_csAI_bot@mastoxiv.page
2025-09-17 10:02:30

Learn to Relax with Large Language Models: Solving Nonlinear Combinatorial Optimization Problems via Bidirectional Coevolution
Beidan Liu, Zhengqiu Zhu, Chen Gao, Yong Zhao, Wei Qi, Quanjun Yin
arxiv.org/abs/2509.12643

@cosmos4u@scicomm.xyz
2025-11-17 07:46:18

Is #AI really just dumb statistics? "Olympiad-level physics problem-solving presents a significant challenge for both humans and artificial intelligence (AI), as it requires a sophisticated integration of precise calculation, abstract reasoning, and a fundamental grasp of physical principles," says the (abstract of the) paper arxiv.org/abs/2511.10515: "The Chinese Physics Olympiad (CPhO), renowned for its complexity and depth, serves as an ideal and rigorous testbed for these advanced capabilities. In this paper, we introduce LOCA-R (LOgical Chain Augmentation for Reasoning), an improved version of the LOCA framework adapted for complex reasoning, and apply it to the CPhO 2025 theory examination. LOCA-R achieves a near-perfect score of 313 out of 320 points, solidly surpassing the highest-scoring human competitor and significantly outperforming all baseline methods." Oops ...?

@arXiv_csCL_bot@mastoxiv.page
2025-09-17 10:39:20

Scaling Agents via Continual Pre-training
Liangcai Su, Zhen Zhang, Guangyu Li, Zhuo Chen, Chenxi Wang, Maojia Song, Xinyu Wang, Kuan Li, Jialong Wu, Xuanzhong Chen, Zile Qiao, Zhongwang Zhang, Huifeng Yin, Shihao Cai, Runnan Fang, Zhengwei Tao, Wenbiao Yin, Chenxiong Qian, Yong Jiang, Pengjun Xie, Fei Huang, Jingren Zhou
arxiv.org/…

@arXiv_csPL_bot@mastoxiv.page
2025-09-17 08:15:30

Efficient Compilation of Algorithms into Compact Linear Programs
Shermin Khosravi, David Bremner
arxiv.org/abs/2509.13006 arxiv.org/pdf/250…

@arXiv_mathNA_bot@mastoxiv.page
2025-09-17 10:11:40

Variational data assimilation for the wave equation in heterogeneous media: Numerical investigation of stability
Erik Burman, Janosch Preuss, Tim van Beeck
arxiv.org/abs/2509.13108

@arXiv_quantph_bot@mastoxiv.page
2025-10-15 10:31:31

Performance of Gaussian Boson Sampling on Planted Bipartite Clique Detection
Yu-Zhen Janice Chen, Laurent Massouli\'e, Don Towsley
arxiv.org/abs/2510.12774

@arXiv_csCY_bot@mastoxiv.page
2025-09-17 07:33:19

Prompting the Professoriate: A Qualitative Study of Instructor Perspectives on LLMs in Data Science Education
Ana Elisa Lopez-Miranda, Tiffany Timbers, Rohan Alexander
arxiv.org/abs/2509.12283

@arXiv_mathNT_bot@mastoxiv.page
2025-10-15 08:32:12

An Effective Method for Solving a Class of Transcendental Diophantine Equations
Zeyu Cai
arxiv.org/abs/2510.11753 arxiv.org/pdf/2510.11753

@arXiv_mathOC_bot@mastoxiv.page
2025-10-15 10:18:11

Column Generation for Periodic Timetabling
Stephanie Riedm\"uller, Niels Lindner
arxiv.org/abs/2510.12466 arxiv.org/pdf/2510.12466

@arXiv_csLG_bot@mastoxiv.page
2025-10-15 08:21:22

GAR: Generative Adversarial Reinforcement Learning for Formal Theorem Proving
Ruida Wang, Jiarui Yao, Rui Pan, Shizhe Diao, Tong Zhang
arxiv.org/abs/2510.11769

@arXiv_csAI_bot@mastoxiv.page
2025-10-14 22:03:35

Replaced article(s) found for cs.AI. arxiv.org/list/cs.AI/new
[8/14]:
- From Problem-Solving to Teaching Problem-Solving: Aligning LLMs with Pedagogy using Reinforcement...
David Dinucu-Jianu, Jakub Macina, Nico Daheim, Ido Hakimi, Iryna Gurevych, Mrinmaya Sachan

@arXiv_csHC_bot@mastoxiv.page
2025-10-14 11:30:58

Exploring Artificial Intelligence and Culture: Methodology for a comparative study of AI's impact on norms, trust, and problem-solving across academic and business environments
Matthias Huemmer, Theophile Shyiramunda, Michelle J. Cummings-Koether
arxiv.org/abs/2510.11530

@arXiv_statML_bot@mastoxiv.page
2025-10-15 10:09:01

Learning Latent Energy-Based Models via Interacting Particle Langevin Dynamics
Joanna Marks, Tim Y. J. Wang, O. Deniz Akyildiz
arxiv.org/abs/2510.12311

@arXiv_eessAS_bot@mastoxiv.page
2025-09-17 11:33:14

Crosslisted article(s) found for eess.AS. arxiv.org/list/eess.AS/new
[1/1]:
- An Adaptive CMSA for Solving the Longest Filled Common Subsequence Problem with an Application in...
Marko Djukanovic, Christian Blum, Aleksandar Kartelj, Ana Nikolikj, Guenther Raidl

@inthehands@hachyderm.io
2025-10-11 18:34:25

The irony here is of course that the people who most need to see these posts won’t because of the very problem I’m giving advice about solving

@arXiv_csSE_bot@mastoxiv.page
2025-10-14 07:48:33

A Comprehensive Survey on Benchmarks and Solutions in Software Engineering of LLM-Empowered Agentic System
Jiale Guo, Suizhi Huang, Mei Li, Dong Huang, Xingsheng Chen, Regina Zhang, Zhijiang Guo, Han Yu, Siu-Ming Yiu, Christian Jensen, Pietro Lio, Kwok-Yan Lam
arxiv.org/abs/2510.09721

@arXiv_mathOC_bot@mastoxiv.page
2025-10-14 11:46:18

An Efficient Solution Method for Solving Convex Separable Quadratic Optimization Problems
Shaoze Li, Junhao Wu, Cheng Lu, Zhibin Deng, Shu-Cherng Fang
arxiv.org/abs/2510.11554

@katrinakatrinka@infosec.exchange
2025-11-26 15:34:11

I'm listening to the most recent episode of #YouAreNotSoSmart, David McRaney's podcast @…. It's about the Trolley problem and morality.
They keep talking about a variation of the trolley problem where, instead of pulling the lever t…

@fanf@mendeddrum.org
2025-11-27 12:42:03

from my link log —
Solving the Partridge square packing problem using MiniZinc.
zayenz.se/blog/post/partridge-
saved 2025-11-26

@arXiv_csDS_bot@mastoxiv.page
2025-10-14 09:03:08

Distributed clustering in partially overlapping feature spaces
Alessio Maritan, Luca Schenato
arxiv.org/abs/2510.09799 arxiv.org/pdf/2510.0…

@arXiv_mathAP_bot@mastoxiv.page
2025-10-07 11:29:02

The parabolic Dirichlet problem with continuous and H\"older boundary data, and rough coefficients
Pablo Hidalgo-Palencia, Cody Hutcheson, Joseph Kasel
arxiv.org/abs/2510.04833

@arXiv_astrophIM_bot@mastoxiv.page
2025-10-14 10:43:58

An efficient spectral Poisson solver for the nirvana-III code: the shearing-box case with vertical vacuum boundary conditions
S. Rendon Restrepo, O. Gressel
arxiv.org/abs/2510.10070

@arXiv_csDC_bot@mastoxiv.page
2025-10-13 08:08:40

Co-designing a Programmable RISC-V Accelerator for MPC-based Energy and Thermal Management of Many-Core HPC Processors
Alessandro Ottaviano, Andrino Meli, Paul Scheffler, Giovanni Bambini, Robert Balas, Davide Rossi, Andrea Bartolini, Luca Benini
arxiv.org/abs/2510.09163

@hex@kolektiva.social
2025-12-09 08:06:48

My almost 4 year old wakes us up yelling: I need to go potty, but I have a banana in my hand.
My partner: put the banana on the table and go to the potty
My almost 4 year old: ok!
Problem solving
#kidposting

@arXiv_csGR_bot@mastoxiv.page
2025-10-14 09:06:58

D3MAS: Decompose, Deduce, and Distribute for Enhanced Knowledge Sharing in Multi-Agent Systems
Heng Zhang, Yuling Shi, Xiaodong Gu, Haochen You, Zijian Zhang, Lubin Gan, Yilei Yuan, Jin Huang
arxiv.org/abs/2510.10585

@arXiv_csAI_bot@mastoxiv.page
2025-10-15 10:25:41

Ax-Prover: A Deep Reasoning Agentic Framework for Theorem Proving in Mathematics and Quantum Physics
Marco Del Tredici, Jacob McCarran, Benjamin Breen, Javier Aspuru Mijares, Weichen Winston Yin, Jacob M. Taylor, Frank Koppens, Dirk Englund
arxiv.org/abs/2510.12787

@arXiv_csCR_bot@mastoxiv.page
2025-10-09 09:49:21

Pseudo-MDPs: A Novel Framework for Efficiently Optimizing Last Revealer Seed Manipulations in Blockchains
Maxime Reynouard
arxiv.org/abs/2510.07080

@arXiv_csCL_bot@mastoxiv.page
2025-10-14 13:14:48

Information-Preserving Reformulation of Reasoning Traces for Antidistillation
Jiayu Ding, Lei Cui, Li Dong, Nanning Zheng, Furu Wei
arxiv.org/abs/2510.11545

@raiders@darktundra.xyz
2025-12-11 18:48:56

Las Vegas Raiders announce 2025 Inspire Change Changemaker raiders.com/news/las-vegas-rai

@kubikpixel@chaos.social
2025-09-29 05:35:14

The AI coding trap
If you ever watch someone “coding”, you might see them spending far more time staring into space than typing on their keyboard. No, they (probably) aren’t slacking off. Software development is fundamentally a practice of problem-solving, and so, as with solving a tricky crossword, most of the work is done in your head. […]
🧑‍💻

@arXiv_mathOC_bot@mastoxiv.page
2025-10-14 08:49:38

Quantum Alternating Direction Method of Multipliers for Semidefinite Programming
Hantao Nie, Dong An, Zaiwen Wen
arxiv.org/abs/2510.10056 a…

@arXiv_csAI_bot@mastoxiv.page
2025-10-10 07:33:48

ProSEA: Problem Solving via Exploration Agents
William Nguyen, Vinh Luong, Christopher Nguyen
arxiv.org/abs/2510.07423 arxiv.org/pdf/2510.0…

@arXiv_csRO_bot@mastoxiv.page
2025-10-09 10:08:31

HyPlan: Hybrid Learning-Assisted Planning Under Uncertainty for Safe Autonomous Driving
Donald Pfaffmann, Matthias Klusch, Marcel Steinmetz
arxiv.org/abs/2510.07210

@arXiv_hepph_bot@mastoxiv.page
2025-10-03 09:56:31

Addressing the sign-problem in Euclidean path integrals with radial basis function neural networks
Gabor Balassa
arxiv.org/abs/2510.01695 a…

@threeofus@mstdn.social
2025-10-07 10:32:23

I hate being told what to do. I also find it hard to accept ideas from other people - my partner especially. I think it’s because I want to find solutions myself and do it in my own time. I’m often overwhelmed with things when she starts talking about another thing that needs sorting out. I feel really angry when she does that. I will try to communicate better in those situations. Sometimes I don’t need problem solving, just a hug.

@Techmeme@techhub.social
2025-09-17 21:26:05

OpenAI says its reasoning system solved all 12 problems at the 2025 ICPC World Finals, with GPT-5 solving 11 and an experimental model solving the last (Maximilian Schreiner/The Decoder)
the-decoder.com/openai-outperf

@arXiv_csLG_bot@mastoxiv.page
2025-10-06 10:24:29

A Unified Deep Reinforcement Learning Approach for Close Enough Traveling Salesman Problem
Mingfeng Fan, Jiaqi Cheng, Yaoxin Wu, Yifeng Zhang, Yibin Yang, Guohua Wu, Guillaume Sartoretti
arxiv.org/abs/2510.03065

@arXiv_csHC_bot@mastoxiv.page
2025-10-14 09:26:18

Read the Room or Lead the Room: Understanding Socio-Cognitive Dynamics in Human-AI Teaming
Jaeyoon Choi, Mohammad Amin Samadi, Spencer JaQuay, Seehee Park, Nia Nixon
arxiv.org/abs/2510.09944

@arXiv_eessIV_bot@mastoxiv.page
2025-09-26 08:57:51

Super-resolution of 4D flow MRI through inverse problem explicit solving
Aur\'elien de Turenne, R\'emi Cart-Lamy, Denis Kouam\'e
arxiv.org/abs/2509.21071

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:35:40

An inexact semismooth Newton-Krylov method for semilinear elliptic optimal control problem
Shiqi Chen, Xuesong Chen
arxiv.org/abs/2511.10058 arxiv.org/pdf/2511.10058 arxiv.org/html/2511.10058
arXiv:2511.10058v1 Announce Type: new
Abstract: An inexact semismooth Newton method has been proposed for solving semi-linear elliptic optimal control problems in this paper. This method incorporates the generalized minimal residual (GMRES) method, a type of Krylov subspace method, to solve the Newton equations and utilizes nonmonotonic line search to adjust the iteration step size. The original problem is reformulated into a nonlinear equation through variational inequality principles and discretized using a second-order finite difference scheme. By leveraging slanting differentiability, the algorithm constructs semismooth Newton directions and employs GMRES method to inexactly solve the Newton equations, significantly reducing computational overhead. A dynamic nonmonotonic line search strategy is introduced to adjust stepsizes adaptively, ensuring global convergence while overcoming local stagnation. Theoretical analysis demonstrates that the algorithm achieves superlinear convergence near optimal solutions when the residual control parameter $\eta_k$ approaches to 0. Numerical experiments validate the method's accuracy and efficiency in solving semilinear elliptic optimal control problems, corroborating theoretical insights.
toXiv_bot_toot

San Jose mayor Matt Mahan brags about "solving" the homeless problem in San Jose.
People are chased out of one area, and then they filter through neighborhoods to new spots, and the cycle repeats over and over...
#SanJose #homeless

A car crosses an intersection, the car is loaded with a pile of household goods, laundry, furniture, lamps, blankets, and more.  The pile is so high the car almost hits the overhead traffic lights in the intersection.
@datascience@genomic.social
2025-11-01 11:00:01

Primer to get you started with Optimization and Mathematical Programming in R #rstats

@arXiv_physicssocph_bot@mastoxiv.page
2025-09-22 09:38:01

Hybrid Learning and Optimization methods for solving Capacitated Vehicle Routing Problem
Monit Sharma, Hoong Chuin Lau
arxiv.org/abs/2509.15262

@arXiv_csCL_bot@mastoxiv.page
2025-10-13 10:38:40

Mitigating Overthinking through Reasoning Shaping
Feifan Song, Shaohang Wei, Bofei Gao, Yejie Wang, Wen Luo, Wei Li, Linli Yao, Weimin Xiong, Liang Chen, Tianyu Liu, Houfeng Wang
arxiv.org/abs/2510.09535

@raiders@darktundra.xyz
2025-12-11 18:21:08

Las Vegas Raiders announce 2025 Inspire Change Changemaker raiders.com/news/las-vegas-rai

@arXiv_quantph_bot@mastoxiv.page
2025-10-08 10:10:09

A New Quantum Linear System Algorithm Beyond the Condition Number and Its Application to Solving Multivariate Polynomial Systems
Jianqiang Li
arxiv.org/abs/2510.05588

@arXiv_mathNA_bot@mastoxiv.page
2025-09-30 11:09:11

A space-time generalized finite difference method for solving the transient Stokes/Parabolic interface problem in the moving system
Yanan Xing, Haibiao Zheng
arxiv.org/abs/2509.23702

@brichapman@mastodon.social
2025-11-21 18:20:05

In Massachusetts, a startup is transforming the cement industry after developing a fossil fuel-free production system, significantly reducing carbon emissions.
triplepundit.com/2025/sublime-

@arXiv_csPL_bot@mastoxiv.page
2025-10-07 08:32:12

Encoding Numeric Computations and Infusing Heuristic Knowledge Using Integrity Constraints in stableKanren
Xiangyu Guo, Ajay Bansal
arxiv.org/abs/2510.04049

@arXiv_csCE_bot@mastoxiv.page
2025-10-07 07:33:24

Nystr\"om-Accelerated Primal LS-SVMs: Breaking the $O(an^3)$ Complexity Bottleneck for Scalable ODEs Learning
Weikuo Wang, Yue Liao, Huan Luo
arxiv.org/abs/2510.04094

@arXiv_csLO_bot@mastoxiv.page
2025-09-23 08:50:10

parSAT: Parallel Solving of Floating-Point Satisfiability
Markus Krahl (University of Applied Sciences Munich HM), Matthias G\"udemann (University of Applied Sciences Munich HM), Stefan Wallentowitz (University of Applied Sciences Munich HM)
arxiv.org/abs/2509.16237

@arXiv_csHC_bot@mastoxiv.page
2025-10-07 07:58:57

Invisible Saboteurs: Sycophantic LLMs Mislead Novices in Problem-Solving Tasks
Jessica Y. Bo, Majeed Kazemitabaar, Mengqing Deng, Michael Inzlicht, Ashton Anderson
arxiv.org/abs/2510.03667

@arXiv_csCL_bot@mastoxiv.page
2025-09-29 11:18:57

Exploring Solution Divergence and Its Effect on Large Language Model Problem Solving
Hang Li, Kaiqi Yang, Yucheng Chu, Hui Liu, Jiliang Tang
arxiv.org/abs/2509.22480

@arXiv_physicsfludyn_bot@mastoxiv.page
2025-10-01 08:56:57

WAN3DNS: Weak Adversarial Networks for Solving 3D Incompressible Navier-Stokes Equations
Wenran Li, Xavier Cadet, Miloud Bessafi, C\'edric Damour, Yu Li, Alain Miranville, Peter Chin, Rong Yang, Xinguang Yang, Frederic Cadet
arxiv.org/abs/2509.26034

@arXiv_csGR_bot@mastoxiv.page
2025-10-10 08:18:19

Local MAP Sampling for Diffusion Models
Shaorong Zhang, Rob Brekelmans, Greg Ver Steeg
arxiv.org/abs/2510.07343 arxiv.org/pdf/2510.07343

@arXiv_csAI_bot@mastoxiv.page
2025-10-13 09:54:30

PAC Reasoning: Controlling the Performance Loss for Efficient Reasoning
Hao Zeng, Jianguo Huang, Bingyi Jing, Hongxin Wei, Bo An
arxiv.org/abs/2510.09133

@arXiv_mathNA_bot@mastoxiv.page
2025-10-13 09:06:20

A Localized Orthogonal Decomposition method for heterogeneous mixed-dimensional problems
Moritz Hauck, Axel M{\aa}lqvist, Malin Mosquera
arxiv.org/abs/2510.09442

@arXiv_quantph_bot@mastoxiv.page
2025-09-30 08:05:35

Proposal of method to solve a Traveling Salesman Problem using Variational Quantum Kolmogorov-Arnold Network
Hikaru Wakaura
arxiv.org/abs/2509.22752

@arXiv_csRO_bot@mastoxiv.page
2025-10-06 08:32:09

A Recipe for Efficient Sim-to-Real Transfer in Manipulation with Online Imitation-Pretrained World Models
Yilin Wang, Shangzhe Li, Haoyi Niu, Zhiao Huang, Weitong Zhang, Hao Su
arxiv.org/abs/2510.02538

@arXiv_csDC_bot@mastoxiv.page
2025-09-26 09:09:22

From GPUs to RRAMs: Distributed In-Memory Primal-Dual Hybrid Gradient Method for Solving Large-Scale Linear Optimization Problem
Huynh Q. N. Vo, Md Tawsif Rahman Chowdhury, Paritosh Ramanan, Gozde Tutuncuoglu, Junchi Yang, Feng Qiu, Murat Yildirim
arxiv.org/abs/2509.21137

@arXiv_mathOC_bot@mastoxiv.page
2025-10-07 09:55:52

CANOPI: Contingency-Aware Nodal Optimal Power Investments with High Temporal Resolution
Thomas Lee, Andy Sun
arxiv.org/abs/2510.03484 arxiv…

@arXiv_csLG_bot@mastoxiv.page
2025-09-29 11:36:27

Learning to Price Bundles: A GCN Approach for Mixed Bundling
Liangyu Ding, Chenghan Wu, Guokai Li, Zizhuo Wang
arxiv.org/abs/2509.22557 arx…

@arXiv_csCL_bot@mastoxiv.page
2025-10-02 10:44:41

Benchmarking Foundation Models with Retrieval-Augmented Generation in Olympic-Level Physics Problem Solving
Shunfeng Zheng, Yudi Zhang, Meng Fang, Zihan Zhang, Zhitan Wu, Mykola Pechenizkiy, Ling Chen
arxiv.org/abs/2510.00919

@arXiv_mathOC_bot@mastoxiv.page
2025-10-13 09:06:30

On the Strength of Linear Relaxations in Ordered Optimization
V\'ictor Blanco, Diego Laborda, Miguel Mart\'inez-Ant\'on
arxiv.org/abs/2510.09166

@arXiv_csCL_bot@mastoxiv.page
2025-10-01 11:13:17

Comparative Analysis of Ant Colony Optimization and Google OR-Tools for Solving the Open Capacitated Vehicle Routing Problem in Logistics
Assem Omar, Youssef Omar, Marwa Solayman, Hesham Mansour
arxiv.org/abs/2509.26216

@arXiv_quantph_bot@mastoxiv.page
2025-09-29 10:40:07

Solving Currency Arbitrage Problems using D-Wave Advantage2 Quantum Annealer
Lorenzo Mazzei, Giada Beccari, Mirko Laruina, Marco Cococcioni
arxiv.org/abs/2509.22591

@arXiv_csAI_bot@mastoxiv.page
2025-10-10 07:45:29

TS-Agent: A Time Series Reasoning Agent with Iterative Statistical Insight Gathering
Penghang Liu, Elizabeth Fons, Svitlana Vyetrenko, Daniel Borrajo, Vamsi Potluru, Manuela Veloso
arxiv.org/abs/2510.07432

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:28:40

Convergence analysis of inexact MBA method for constrained upper-$\mathcal{C}^2$ optimization problems
Ruyu Liu, Shaohua Pan
arxiv.org/abs/2511.09940 arxiv.org/pdf/2511.09940 arxiv.org/html/2511.09940
arXiv:2511.09940v1 Announce Type: new
Abstract: This paper concerns a class of constrained optimization problems in which, the objective and constraint functions are both upper-$\mathcal{C}^2$. For such nonconvex and nonsmooth optimization problems, we develop an inexact moving balls approximation (MBA) method by a workable inexactness criterion for the solving of subproblems. By leveraging a global error bound for the strongly convex program associated with parametric optimization problems, we establish the full convergence of the iterate sequence under the partial bounded multiplier property (BMP) and the Kurdyka-{\L}ojasiewicz (KL) property of the constructed potential function, and achieve the local convergence rate of the iterate and objective value sequences if the potential function satisfies the KL property of exponent $q\in[1/2,1)$. A verifiable condition is also provided to check whether the potential function satisfies the KL property of exponent $q\in[1/2,1)$ at the given critical point. To the best of our knowledge, this is the first implementable inexact MBA method with a full convergence certificate for the constrained nonconvex and nonsmooth optimization problem.
toXiv_bot_toot

@arXiv_mathNA_bot@mastoxiv.page
2025-10-10 08:55:59

Stochastic Gradient Descent for Incomplete Tensor Linear Systems
Anna Ma, Deanna Needell, Alexander Xue
arxiv.org/abs/2510.07630 arxiv.org/…

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 09:58:00

Measuring dissimilarity between convex cones by means of max-min angles
Welington de Oliveira, Valentina Sessa, David Sossa
arxiv.org/abs/2511.10483 arxiv.org/pdf/2511.10483 arxiv.org/html/2511.10483
arXiv:2511.10483v1 Announce Type: new
Abstract: This work introduces a novel dissimilarity measure between two convex cones, based on the max-min angle between them. We demonstrate that this measure is closely related to the Pompeiu-Hausdorff distance, a well-established metric for comparing compact sets. Furthermore, we examine cone configurations where the measure admits simplified or analytic forms. For the specific case of polyhedral cones, a nonconvex cutting-plane method is deployed to compute, at least approximately, the measure between them. Our approach builds on a tailored version of Kelley's cutting-plane algorithm, which involves solving a challenging master program per iteration. When this master program is solved locally, our method yields an angle that satisfies certain necessary optimality conditions of the underlying nonconvex optimization problem yielding the dissimilarity measure between the cones. As an application of the proposed mathematical and algorithmic framework, we address the image-set classification task under limited data conditions, a task that falls within the scope of the \emph{Few-Shot Learning} paradigm. In this context, image sets belonging to the same class are modeled as polyhedral cones, and our dissimilarity measure proves useful for understanding whether two image sets belong to the same class.
toXiv_bot_toot

@arXiv_quantph_bot@mastoxiv.page
2025-10-02 10:30:21

Probing quantum advantage for solving the Fermi-Hubbard model with entropy benchmarking
Pauline Besserve, Ra\'ul Garc\'ia-Patr\'on
arxiv.org/abs/2510.00930

@arXiv_csCL_bot@mastoxiv.page
2025-10-06 10:18:39

Constraint Satisfaction Approaches to Wordle: Novel Heuristics and Cross-Lexicon Validation
Jahidul Arafat, Fariha Tasmin, Sanjaya Poudel, Kamrujjaman, Eftakhar Ahmed Arnob, Ahsan Habib Tareq
arxiv.org/abs/2510.02855

@arXiv_csAI_bot@mastoxiv.page
2025-09-24 09:56:54

Solving Math Word Problems Using Estimation Verification and Equation Generation
Mitchell Piehl, Dillon Wilson, Ananya Kalita, Jugal Kalita
arxiv.org/abs/2509.18565

@arXiv_mathOC_bot@mastoxiv.page
2025-10-08 08:29:39

A System Level Approach to LQR Control of the Diffusion Equation
Addie McCurdy, Andrew Gusty, Emily Jensen
arxiv.org/abs/2510.05345 arxiv.o…

@arXiv_csHC_bot@mastoxiv.page
2025-10-07 09:08:22

AI-Driven Grading and Moderation for Collaborative Projects in Computer Science Education
Songmei Yu, Andrew Zagula
arxiv.org/abs/2510.03998

@arXiv_mathNA_bot@mastoxiv.page
2025-10-01 09:43:58

HANN: Homotopy auxiliary neural network for solving nonlinear algebraic equations
Ling-Zhe Zai, Lei-Lei Guo, Zhi-Yong Zhang
arxiv.org/abs/2509.26358

@arXiv_csAI_bot@mastoxiv.page
2025-10-09 09:45:21

TGPR: Tree-Guided Policy Refinement for Robust Self-Debugging of LLMs
Daria Ozerova, Ekaterina Trofimova
arxiv.org/abs/2510.06878 arxiv.org…

@arXiv_mathOC_bot@mastoxiv.page
2025-11-14 10:10:20

Global Solutions to Non-Convex Functional Constrained Problems with Hidden Convexity
Ilyas Fatkhullin, Niao He, Guanghui Lan, Florian Wolf
arxiv.org/abs/2511.10626 arxiv.org/pdf/2511.10626 arxiv.org/html/2511.10626
arXiv:2511.10626v1 Announce Type: new
Abstract: Constrained non-convex optimization is fundamentally challenging, as global solutions are generally intractable and constraint qualifications may not hold. However, in many applications, including safe policy optimization in control and reinforcement learning, such problems possess hidden convexity, meaning they can be reformulated as convex programs via a nonlinear invertible transformation. Typically such transformations are implicit or unknown, making the direct link with the convex program impossible. On the other hand, (sub-)gradients with respect to the original variables are often accessible or can be easily estimated, which motivates algorithms that operate directly in the original (non-convex) problem space using standard (sub-)gradient oracles. In this work, we develop the first algorithms to provably solve such non-convex problems to global minima. First, using a modified inexact proximal point method, we establish global last-iterate convergence guarantees with $\widetilde{\mathcal{O}}(\varepsilon^{-3})$ oracle complexity in non-smooth setting. For smooth problems, we propose a new bundle-level type method based on linearly constrained quadratic subproblems, improving the oracle complexity to $\widetilde{\mathcal{O}}(\varepsilon^{-1})$. Surprisingly, despite non-convexity, our methodology does not require any constraint qualifications, can handle hidden convex equality constraints, and achieves complexities matching those for solving unconstrained hidden convex optimization.
toXiv_bot_toot

@arXiv_mathOC_bot@mastoxiv.page
2025-09-30 11:16:51

Computing Invariant Zeros of a MIMO Linear System Using State-Space Realization
Jhon Manuel Portella Delgado, Ankit Goel
arxiv.org/abs/2509.24105

@arXiv_csHC_bot@mastoxiv.page
2025-10-07 10:27:12

Observing Without Doing: Pseudo-Apprenticeship Patterns in Student LLM Use
Jade Hak, Nathaniel Lam Johnson, Matin Amoozadeh, Amin Alipour, Souti Chattopadhyay
arxiv.org/abs/2510.04986

@arXiv_mathNA_bot@mastoxiv.page
2025-10-02 08:48:21

A Computationally Efficient Finite Element Method for Shape Reconstruction of Inverse Conductivity Problems
Lefu Cai, Zhixin Liu, Minghui Song, Xianchao Wang
arxiv.org/abs/2510.00597

@arXiv_csAI_bot@mastoxiv.page
2025-10-08 10:30:29

Refusal Falls off a Cliff: How Safety Alignment Fails in Reasoning?
Qingyu Yin, Chak Tou Leong, Linyi Yang, Wenxuan Huang, Wenjie Li, Xiting Wang, Jaehong Yoon, YunXing, XingYu, Jinjin Gu
arxiv.org/abs/2510.06036

@arXiv_csAI_bot@mastoxiv.page
2025-09-23 11:57:40

EngiBench: A Benchmark for Evaluating Large Language Models on Engineering Problem Solving
Xiyuan Zhou, Xinlei Wang, Yirui He, Yang Wu, Ruixi Zou, Yuheng Cheng, Yulu Xie, Wenxuan Liu, Huan Zhao, Yan Xu, Jinjin Gu, Junhua Zhao
arxiv.org/abs/2509.17677

@arXiv_csAI_bot@mastoxiv.page
2025-09-18 09:14:41

AI Agents with Human-Like Collaborative Tools: Adaptive Strategies for Enhanced Problem-Solving
Harper Reed, Michael Sugimura, Angelo Zangari
arxiv.org/abs/2509.13547

@arXiv_csCL_bot@mastoxiv.page
2025-10-03 10:47:01

Syntactic Blind Spots: How Misalignment Leads to LLMs Mathematical Errors
Dane Williamson, Yangfeng Ji, Matthew Dwyer
arxiv.org/abs/2510.01831

@arXiv_csAI_bot@mastoxiv.page
2025-09-26 08:28:51

Calibrated Reasoning: An Explanatory Verifier for Dynamic and Efficient Problem-Solving
Anisha Garg, Engin Tekin, Yash More, David Bick, Nishit Neema, Ganesh Venkatesh
arxiv.org/abs/2509.19681

@arXiv_mathOC_bot@mastoxiv.page
2025-10-02 10:06:51

A first-order method for constrained nonconvex--nonconcave minimax problems under a local Kurdyka-{\L}ojasiewicz condition
Zhaosong Lu, Xiangyuan Wang
arxiv.org/abs/2510.01168

@arXiv_csAI_bot@mastoxiv.page
2025-09-25 08:32:32

Calibrated Reasoning: An Explanatory Verifier for Dynamic and Efficient Problem-Solving
Anisha Garg, Engin Tekin, Yash More, David Bick, Nishit Neema, Ganesh Venkatesh
arxiv.org/abs/2509.19681

@arXiv_csCL_bot@mastoxiv.page
2025-10-03 10:38:51

AMAS: Adaptively Determining Communication Topology for LLM-based Multi-Agent System
Hui Yi Leong, Yuheng Li, Yuqing Wu, Wenwen Ouyang, Wei Zhu, Jiechao Gao
arxiv.org/abs/2510.01617

@arXiv_mathOC_bot@mastoxiv.page
2025-10-03 08:34:21

Optimization by Directional Attacks: Solving Problems with Neural Network Surrogates
Pierre-Yves Bouchet, Thibaut Vidal
arxiv.org/abs/2510.01461

@arXiv_csCL_bot@mastoxiv.page
2025-10-01 11:18:47

Latent Thinking Optimization: Your Latent Reasoning Language Model Secretly Encodes Reward Signals in its Latent Thoughts
Hanwen Du, Yuxin Dong, Xia Ning
arxiv.org/abs/2509.26314

@arXiv_csAI_bot@mastoxiv.page
2025-10-06 09:20:39

Beyond the Final Answer: Evaluating the Reasoning Trajectories of Tool-Augmented Agents
Wonjoong Kim, Sangwu Park, Yeonjun In, Sein Kim, Dongha Lee, Chanyoung Park
arxiv.org/abs/2510.02837

@arXiv_csCL_bot@mastoxiv.page
2025-09-30 14:04:41

Expanding Computation Spaces of LLMs at Inference Time
Yoonna Jang, Kisu Yang, Isabelle Augenstein
arxiv.org/abs/2509.24884 arxiv.org/pdf/2…

@arXiv_mathOC_bot@mastoxiv.page
2025-09-24 10:01:14

Solving Sparse MIQCQPs: Application to the Unit Commitment Problem with ACOPF Constraints
Ignacio G\'omez-Casares, Pietro Belotti, Bissan Ghaddar, Julio Gonz\'alez-D\'iaz
arxiv.org/abs/2509.18911

@arXiv_csAI_bot@mastoxiv.page
2025-09-26 09:28:21

Analysis of approximate linear programming solution to Markov decision problem with log barrier function
Donghwan Lee, Hyukjun Yang, Bum Geun Park
arxiv.org/abs/2509.19800

@arXiv_csAI_bot@mastoxiv.page
2025-09-25 09:02:52

Analysis of approximate linear programming solution to Markov decision problem with log barrier function
Donghwan Lee, Hyukjun Yang, Bum Geun Park
arxiv.org/abs/2509.19800

@arXiv_mathOC_bot@mastoxiv.page
2025-10-07 10:03:12

Agile Tradespace Exploration for Space Rendezvous Mission Design via Transformers
Yuji Takubo, Daniele Gammelli, Marco Pavone, Simone D'Amico
arxiv.org/abs/2510.03544

@arXiv_mathOC_bot@mastoxiv.page
2025-09-29 09:31:18

A note on the Davis-Yin three-operator splitting method
Maoran Wang, Xingju Cai
arxiv.org/abs/2509.22032 arxiv.org/pdf/2509.22032