Overly academic/distanced ethical discussions
Had a weird interaction with @/brainwane@social.coop just now. I misinterpreted one of their posts quoting someone else and I think the combination of that plus an interaction pattern where I'd assume their stance on something and respond critically to that ended up with me getting blocked. I don't have hard feelings exactly, and this post is only partly about this particular person, but I noticed something interesting by the end of the conversation that had been bothering me. They repeatedly criticized me for assuming what their position was, but never actually stated their position. They didn't say: "I'm bothered you assumed my position was X, it's actually Y." They just said "I'm bothered you assumed my position was X, please don't assume my position!" I get that it's annoying to have people respond to a straw man version of your argument, but when I in response asked some direct questions about what their position was, they gave some non-answers and then blocked me. It's entirely possible it's a coincidence, and they just happened to run out of patience on that iteration, but it makes me take their critique of my interactions a bit less seriously. I suspect that they just didn't want to hear what I was saying, while at the same time they wanted to feel as if they were someone who values public critique and open discussion of tricky issues (if anyone reading this post also followed our interaction and has a different opinion of my behavior, I'd be glad to hear it; it's possible In effectively being an asshole here and it would be useful to hear that if so).
In any case, the fact that at the end of the entire discussion, I'm realizing I still don't actually know their position on whether they think the AI use case in question is worthwhile feels odd. They praised the system on several occasions, albeit noting some drawbacks while doing so. They said that the system was possibly changing their anti-AI stance, but then got mad at me for assuming this meant that they thought this use-case was justified. Maybe they just haven't made up their mind yet but didn't want to say that?
Interestingly, in one of their own blog posts that got linked in the discussion, they discuss a different AI system, and despite listing a bunch of concrete harms, conclude that it's okay to use it. That's fine; I don't think *every* use of AI is wrong on balance, but what bothered me was that their post dismissed a number of real ethical issues by saying essentially "I haven't seen calls for a boycott over this issue, so it's not a reason to stop use." That's an extremely socially conformist version of ethics that doesn't sit well with me. The discussion also ended up linking this post: https://chelseatroy.com/2024/08/28/does-ai-benefit-the-world/ which bothered me in a related way. In it, Troy describes classroom teaching techniques for introducing and helping students explore the ethics of AI, and they seem mostly great. They avoid prescribing any particular correct stance, which is important when teaching given the power relationship, and they help students understand the limitations of their perspectives regarding global impacts, which is great. But the overall conclusion of the post is that "nobody is qualified to really judge global impacts, so we should focus on ways to improve outcomes instead of trying to judge them." This bothers me because we actually do have a responsibility to make decisive ethical judgments despite limitations of our perspectives. If we never commit to any ethical judgment against a technology because we think our perspective is too limited to know the true impacts (which I'll concede it invariably is) then we'll have to accept every technology without objection, limiting ourselves to trying to improve their impacts without opposing them. Given who currently controls most of the resources that go into exploration for new technologies, this stance is too permissive. Perhaps if our objection to a technology was absolute and instantly effective, I'd buy the argument that objecting without a deep global view of the long-term risks is dangerous. As things stand, I think that objecting to the development/use of certain technologies in certain contexts is necessary, and although there's a lot of uncertainly, I expect strongly enough that the overall outcomes of objection will be positive that I think it's a good thing to do.
The deeper point here I guess is that this kind of "things are too complicated, let's have a nuanced discussion where we don't come to any conclusions because we see a lot of unknowns along with definite harms" really bothers me.
LLM coding is the opposite of DRY
An important principle in software engineering is DRY: Don't Repeat Yourself. We recognize that having the same code copied in more than one place is bad for several reasons:
1. It makes the entire codebase harder to read.
2. It increases maintenance burden, since any problems in the duplicated code need to be solved in more than one place.
3. Because it becomes possible for the copies to drift apart if changes to one aren't transferred to the other (maybe the person making the change has forgotten there was a copy) it makes the code more error-prone and harder to debug.
All modern programming languages make it almost entirely unnecessary to repeat code: we can move the repeated code into a "function" or "module" and then reference it from all the different places it's needed. At a larger scale, someone might write an open-source "library" of such functions or modules and instead of re-implementing that functionality ourselves, we can use their code, with an acknowledgement. Using another person's library this way is complicated, because now you're dependent on them: if they stop maintaining it or introduce bugs, you've inherited a problem, but still, you could always copy their project and maintain your own version, and it would be not much more work than if you had implemented stuff yourself from the start. It's a little more complicated than this, but the basic principle holds, and it's a foundational one for software development in general and the open-source movement in particular. The network of "citations" as open-source software builds on other open-source software and people contribute patches to each others' projects is a lot of what makes the movement into a community, and it can lead to collaborations that drive further development. So the DRY principle is important at both small and large scales.
Unfortunately, the current crop of hyped-up LLM coding systems from the big players are antithetical to DRY at all scales:
- At the library scale, they train on open source software but then (with some unknown frequency) replicate parts of it line-for-line *without* any citation [1]. The person who was using the LLM has no way of knowing that this happened, or even any way to check for it. In theory the LLM company could build a system for this, but it's not likely to be profitable unless the courts actually start punishing these license violations, which doesn't seem likely based on results so far and the difficulty of finding out that the violations are happening. By creating these copies (and also mash-ups, along with lots of less-problematic stuff), the LLM users (enabled and encouraged by the LLM-peddlers) are directly undermining the DRY principle. If we see what the big AI companies claim to want, which is a massive shift towards machine-authored code, DRY at the library scale will effectively be dead, with each new project simply re-implementing the functionality it needs instead of every using a library. This might seem to have some upside, since dependency hell is a thing, but the downside in terms of comprehensibility and therefore maintainability, correctness, and security will be massive. The eventual lack of new high-quality DRY-respecting code to train the models on will only make this problem worse.
- At the module & function level, AI is probably prone to re-writing rather than re-using the functions or needs, especially with a workflow where a human prompts it for many independent completions. This part I don't have direct evidence for, since I don't use LLM coding models myself except in very specific circumstances because it's not generally ethical to do so. I do know that when it tries to call existing functions, it often guesses incorrectly about the parameters they need, which I'm sure is a headache and source of bugs for the vibe coders out there. An AI could be designed to take more context into account and use existing lookup tools to get accurate function signatures and use them when generating function calls, but even though that would probably significantly improve output quality, I suspect it's the kind of thing that would be seen as too-baroque and thus not a priority. Would love to hear I'm wrong about any of this, but I suspect the consequences are that any medium-or-larger sized codebase written with LLM tools will have significant bloat from duplicate functionality, and will have places where better use of existing libraries would have made the code simpler. At a fundamental level, a principle like DRY is not something that current LLM training techniques are able to learn, and while they can imitate it from their training sets to some degree when asked for large amounts of code, when prompted for many smaller chunks, they're asymptotically likely to violate it.
I think this is an important critique in part because it cuts against the argument that "LLMs are the modern compliers, if you reject them you're just like the people who wanted to keep hand-writing assembly code, and you'll be just as obsolete." Compilers actually represented a great win for abstraction, encapsulation, and DRY in general, and they supported and are integral to open source development, whereas LLMs are set to do the opposite.
[1] to see what this looks like in action in prose, see the example on page 30 of the NYTimes copyright complaint against OpenAI (#AI #GenAI #LLMs #VibeCoding