2025-10-23 10:02:17
Some thoughts from recent talks: 'AI and Machine Learning in Libraries: Promising, But Not Ready Yet' https://www.openobjects.org.uk/2025/10/ai-and-machine-learning-in-libraries-promising-but-not-ready-yet/
Some thoughts from recent talks: 'AI and Machine Learning in Libraries: Promising, But Not Ready Yet' https://www.openobjects.org.uk/2025/10/ai-and-machine-learning-in-libraries-promising-but-not-ready-yet/
"AI in the guise of Machine Learning, Deep Learning, GenerativeAI (GenAI), or Large Language Models (LLMs)... can be very useful in certain application areas such as recognising or generating patterns in large data sets. However, their key drawback is that any correctness arguments will be inherently probabilistic as they are usually based on unknown data distributions and are therefore susceptible to errors (sometimes termed “hallucinations”). "
Over the last decade, America’s roads have become more dangerous,
with serious crashes increasing by nearly 20 percent since 2013.
Approximately 94 percent of crashes are the result of driver behavior
like speeding, impairment or distraction
— behavior that can be detected and corrected by a new generation of machine learning-enabled dash-cams.
Seamless integration between machine learning, IoT management and the cloud allows these cameras to improve safety in r…
I wrote up a talk I did recently: 'AI and Machine Learning in Libraries: Promising, But Not Ready Yet' https://www.openobjects.org.uk/2025/10/ai-and-machine-learning-in-libraries-promising-but-not-ready-yet
Buccaneers vs. Rams NFL player props, SGP: Self-learning AI backs Baker Mayfield Over 242.5 yards on 'SNF'
https://www.cbssports.com/nfl/news/buccane
"“Papers with Code” went offline, the knowledge doesn’t have to" @…: https://blog.tib.eu/2025/10/02/papers-
Sumble, which offers an AI sales intelligence service, emerges from stealth and raised a $30M Series A led by Canaan Partners and $8.5M seed led by Coatue (Ram Iyer/TechCrunch)
https://techcrunch.com/2025/10/22/sumbl…
'Cost-Effective Machine Learning for Automatically Processing Bibliographic Metadata' is a very readable account of using DistilBERT for specific DH tasks https://www.euppublishing.com/doi/full/10.3366/ijhac.2025.0353
49ers vs. Panthers SGP: 'Monday Night Football' same-game parlay picks, bets, props from SportsLine AI
https://www.cbssports.com/nfl/news/49ers-pan…
Replaced article(s) found for physics.optics. https://arxiv.org/list/physics.optics/new
[1/1]:
- LLM4Laser: Large Language Models Automate the Design of Lasers
Renjie Li, Ceyao Zhang, Sixuan Mao, Xiyuan Zhou, Feng Yin, Sergios Theodoridis, Zhaoyu Zhang
https://arxiv.org/abs/2104.12145
- Room-temperature valley-selective emission in Si-MoSe2 heterostructures enabled by high-quality-f...
Feng Pan, et al.
https://arxiv.org/abs/2409.09806 https://mastoxiv.page/@arXiv_physicsoptics_bot/113152185040115763
- 1T'-MoTe$_2$ as an integrated saturable absorber for photonic machine learning
Maria Carolina Volpato, Henrique G. Rosa, Tom Reep, Pierre-Louis de Assis, Newton Cesario Frateschi
https://arxiv.org/abs/2507.16140 https://mastoxiv.page/@arXiv_physicsoptics_bot/114901571498004090
- NeOTF: Guidestar-free neural representation for broadband dynamic imaging through scattering
Yunong Sun, Fei Xia
https://arxiv.org/abs/2507.22328 https://mastoxiv.page/@arXiv_physicsoptics_bot/114947052118796753
- Structured Random Models for Phase Retrieval with Optical Diffusers
Zhiyuan Hu, Fakhriyya Mammadova, Juli\'an Tachella, Michael Unser, Jonathan Dong
https://arxiv.org/abs/2510.14490 https://mastoxiv.page/@arXiv_physicsoptics_bot/115388901264416806
- Memory Effects in Time-Modulated Radiative Heat Transfer
Riccardo Messina, Philippe Ben-Abdallah
https://arxiv.org/abs/2510.19378 https://mastoxiv.page/@arXiv_physicsoptics_bot/115422659227231796
- Mie-tronics supermodes and symmetry breaking in nonlocal metasurfaces
Thanh Xuan Hoang, Ayan Nussupbekov, Jie Ji, Daniel Leykam, Jaime Gomez Rivas, Yuri Kivshar
https://arxiv.org/abs/2511.03560 https://mastoxiv.page/@arXiv_physicsoptics_bot/115502066008543828
- Integrated soliton microcombs beyond the turnkey limit
Wang, Xu, Wang, Zhu, Luo, Luo, Wang, Ni, Yang, Gong, Xiao, Li, Yang
https://arxiv.org/abs/2511.06909 https://mastoxiv.page/@arXiv_physicsoptics_bot/115530791701071777
- Ising accelerator with a reconfigurable interferometric photonic processor
Rausell-Campo, Al Kayed, P\'erez-L\'ppez, Aadhi, Shastri, Francoy
https://arxiv.org/abs/2511.13284 https://mastoxiv.page/@arXiv_physicsoptics_bot/115570439939074488
- Superradiance in dense atomic samples
I. M. de Ara\'ujo, H. Sanchez, L. F. Alves da Silva, M. H. Y. Moussa
https://arxiv.org/abs/2504.20242 https://mastoxiv.page/@arXiv_quantph_bot/114425762810828336
- Fluctuation-induced Hall-like lateral forces in a chiral-gain environment
Daigo Oue, M\'ario G. Silveirinha
https://arxiv.org/abs/2507.14754 https://mastoxiv.page/@arXiv_condmatmeshall_bot/114896308178114535
- Tensor-network approach to quantum optical state evolution beyond the Fock basis
Nikolay Kapridov, Egor Tiunov, Dmitry Chermoshentsev
https://arxiv.org/abs/2511.15295 https://mastoxiv.page/@arXiv_quantph_bot/115581390666689204
- OmniLens : Blind Lens Aberration Correction via Large LensLib Pre-Training and Latent PSF Repres...
Jiang, Qian, Gao, Sun, Yang, Yi, Li, Yang, Van Gool, Wang
https://arxiv.org/abs/2511.17126 https://mastoxiv.page/@arXiv_eessIV_bot/115603729319581340
toXiv_bot_toot
Detection of quantum information masking via machine learning
Sheng-Ao Mao, Lin Zhang, Bo Li
https://arxiv.org/abs/2510.12507 https://arxiv.org/pdf/2510.12…
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[2/5]:
- The Diffusion Duality
Sahoo, Deschenaux, Gokaslan, Wang, Chiu, Kuleshov
https://arxiv.org/abs/2506.10892 https://mastoxiv.page/@arXiv_csLG_bot/114675526577078472
- Multimodal Representation Learning and Fusion
Jin, Ge, Xie, Luo, Song, Bi, Liang, Guan, Yeong, Song, Hao
https://arxiv.org/abs/2506.20494 https://mastoxiv.page/@arXiv_csLG_bot/114749113025183688
- The kernel of graph indices for vector search
Mariano Tepper, Ted Willke
https://arxiv.org/abs/2506.20584 https://mastoxiv.page/@arXiv_csLG_bot/114749118923266356
- OptScale: Probabilistic Optimality for Inference-time Scaling
Youkang Wang, Jian Wang, Rubing Chen, Xiao-Yong Wei
https://arxiv.org/abs/2506.22376 https://mastoxiv.page/@arXiv_csLG_bot/114771735361664528
- Boosting Revisited: Benchmarking and Advancing LP-Based Ensemble Methods
Fabian Akkerman, Julien Ferry, Christian Artigues, Emmanuel Hebrard, Thibaut Vidal
https://arxiv.org/abs/2507.18242 https://mastoxiv.page/@arXiv_csLG_bot/114913322736512937
- MolMark: Safeguarding Molecular Structures through Learnable Atom-Level Watermarking
Runwen Hu, Peilin Chen, Keyan Ding, Shiqi Wang
https://arxiv.org/abs/2508.17702 https://mastoxiv.page/@arXiv_csLG_bot/115095014405732247
- Dual-Distilled Heterogeneous Federated Learning with Adaptive Margins for Trainable Global Protot...
Fatema Siddika, Md Anwar Hossen, Wensheng Zhang, Anuj Sharma, Juan Pablo Mu\~noz, Ali Jannesari
https://arxiv.org/abs/2508.19009 https://mastoxiv.page/@arXiv_csLG_bot/115100269482762688
- STDiff: A State Transition Diffusion Framework for Time Series Imputation in Industrial Systems
Gary Simethy, Daniel Ortiz-Arroyo, Petar Durdevic
https://arxiv.org/abs/2508.19011 https://mastoxiv.page/@arXiv_csLG_bot/115100270137397046
- EEGDM: Learning EEG Representation with Latent Diffusion Model
Shaocong Wang, Tong Liu, Yihan Li, Ming Li, Kairui Wen, Pei Yang, Wenqi Ji, Minjing Yu, Yong-Jin Liu
https://arxiv.org/abs/2508.20705 https://mastoxiv.page/@arXiv_csLG_bot/115111565155687451
- Data-Free Continual Learning of Server Models in Model-Heterogeneous Cloud-Device Collaboration
Xiao Zhang, Zengzhe Chen, Yuan Yuan, Yifei Zou, Fuzhen Zhuang, Wenyu Jiao, Yuke Wang, Dongxiao Yu
https://arxiv.org/abs/2509.25977 https://mastoxiv.page/@arXiv_csLG_bot/115298721327100391
- Fine-Tuning Masked Diffusion for Provable Self-Correction
Jaeyeon Kim, Seunggeun Kim, Taekyun Lee, David Z. Pan, Hyeji Kim, Sham Kakade, Sitan Chen
https://arxiv.org/abs/2510.01384 https://mastoxiv.page/@arXiv_csLG_bot/115309690976554356
- A Generic Machine Learning Framework for Radio Frequency Fingerprinting
Alex Hiles, Bashar I. Ahmad
https://arxiv.org/abs/2510.09775 https://mastoxiv.page/@arXiv_csLG_bot/115372387779061015
- ASecond-Order SpikingSSM for Wearables
Kartikay Agrawal, Abhijeet Vikram, Vedant Sharma, Vaishnavi Nagabhushana, Ayon Borthakur
https://arxiv.org/abs/2510.14386 https://mastoxiv.page/@arXiv_csLG_bot/115389079527543821
- Utility-Diversity Aware Online Batch Selection for LLM Supervised Fine-tuning
Heming Zou, Yixiu Mao, Yun Qu, Qi Wang, Xiangyang Ji
https://arxiv.org/abs/2510.16882 https://mastoxiv.page/@arXiv_csLG_bot/115412243355962887
- Seeing Structural Failure Before it Happens: An Image-Based Physics-Informed Neural Network (PINN...
Omer Jauhar Khan, Sudais Khan, Hafeez Anwar, Shahzeb Khan, Shams Ul Arifeen
https://arxiv.org/abs/2510.23117 https://mastoxiv.page/@arXiv_csLG_bot/115451891042176876
- Training Deep Physics-Informed Kolmogorov-Arnold Networks
Spyros Rigas, Fotios Anagnostopoulos, Michalis Papachristou, Georgios Alexandridis
https://arxiv.org/abs/2510.23501 https://mastoxiv.page/@arXiv_csLG_bot/115451942159737549
- Semi-Supervised Preference Optimization with Limited Feedback
Seonggyun Lee, Sungjun Lim, Seojin Park, Soeun Cheon, Kyungwoo Song
https://arxiv.org/abs/2511.00040 https://mastoxiv.page/@arXiv_csLG_bot/115490555013124989
- Towards Causal Market Simulators
Dennis Thumm, Luis Ontaneda Mijares
https://arxiv.org/abs/2511.04469 https://mastoxiv.page/@arXiv_csLG_bot/115507943827841017
- Incremental Generation is Necessary and Sufficient for Universality in Flow-Based Modelling
Hossein Rouhvarzi, Anastasis Kratsios
https://arxiv.org/abs/2511.09902 https://mastoxiv.page/@arXiv_csLG_bot/115547587245365920
- Optimizing Mixture of Block Attention
Guangxuan Xiao, Junxian Guo, Kasra Mazaheri, Song Han
https://arxiv.org/abs/2511.11571 https://mastoxiv.page/@arXiv_csLG_bot/115564541392410174
- Assessing Automated Fact-Checking for Medical LLM Responses with Knowledge Graphs
Shasha Zhou, Mingyu Huang, Jack Cole, Charles Britton, Ming Yin, Jan Wolber, Ke Li
https://arxiv.org/abs/2511.12817 https://mastoxiv.page/@arXiv_csLG_bot/115570877730326947
toXiv_bot_toot
Robot Learning: A Tutorial
Francesco Capuano, Caroline Pascal, Adil Zouitine, Thomas Wolf, Michel Aractingi
https://arxiv.org/abs/2510.12403 https://arxiv.…
Week 8 NFL player props, picks, odds: Target Daniel Jones Over 233.5 passing yards for Sunday NFL prop bets
https://www.cbssports.com/nfl/news/week-8-
This is an important announcement. Google uses it's ecosystem to gain an advantage, "Announcing Model Context Protocol (MCP) support for Google services"
https://cloud.google.com/blog/products/ai-machine-learning/ann…
Every week, Metacurity delivers our free and paid subscribers a run-down of the top infosec-related long reads we didn't have time for during the daily crush of cyber news.
This week's selection covers
--Massive surveillance in Mexico City leaves crime high,
--Workplace surveillance can harm workers,
--Machine learning privacy attacks are less effective in reality than they are in theory,
--LLMs produce more secure code when trained on flaw-free code,
Prismo: A Decision Support System for Privacy-Preserving ML Framework Selection
Nges Brian Njungle, Eric Jahns, Luigi Mastromauro, Edwin P. Kayang, Milan Stojkov, Michel A. Kinsy
https://arxiv.org/abs/2510.09985
Operand Quant: A Single-Agent Architecture for Autonomous Machine Learning Engineering
Arjun Sahney, Ram Gorthi, Cezary {\L}astowski, Javier Vega
https://arxiv.org/abs/2510.11694
In the remaining two thirds of the book a second interpreter – a bytecode virtual machine – is built using C. I'm very much looking forward to that part of the book. However, I can't bring myself to write C, not even for something inconsequential like this. So I guess I'll finally have to get serious about properly learning Rust.
In the remaining two thirds of the book a second interpreter – a bytecode virtual machine – is built using C. I'm very much looking forward to that part of the book. However, I can't bring myself to write C, not even for something inconsequential like this. So I guess I'll finally have to get serious about properly learning Rust.
A Systematic Literature Review of Machine Learning Techniques for Observational Constraints in Cosmology
Luis Rojas, Sebasti\'an Espinoza, Esteban Gonz\'alez, Carlos Maldonado, Fei Luo
https://arxiv.org/abs/2510.09876
Spectropolarimetric Inversion in Four Dimensions with Deep Learning (SPIn4D): II. A Physics-Informed Machine Learning Method for 3D Solar Photosphere Reconstruction
Kai E. Yang, Xudong Sun, Lucas A. Tarr, Jiayi Liu, Peter Sadowski, S. Curt Dodds, Matthias Rempel, Sarah A. Jaeggli, Thomas A. Schad, Ian Cunnyngham, Yannik Glaser, Linnea Wolniewicz
https://…
Based on Deep Neural Networks: A Machine Learning-Assisted Channel Estimation Method for MIMO Systems
Haoran He
https://arxiv.org/abs/2510.11891 https://ar…
Week 8 NFL anytime touchdown scorer picks, odds: Tyler Warren among best bets for anytime TD scorer bets
https://www.cbssports.com/nfl/news/week-8-
Constraint-Guided Unit Test Generation for Machine Learning Libraries
Lukas Krodinger, Altin Hajdari, Stephan Lukasczyk, Gordon Fraser
https://arxiv.org/abs/2510.09108 https://
Intuitions of Machine Learning Researchers about Transfer Learning for Medical Image Classification
Yucheng Lu, Hubert Dariusz Zaj\k{a}c, Veronika Cheplygina, Amelia Jim\'enez-S\'anchez
https://arxiv.org/abs/2510.00902
Crosslisted article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[1/3]:
- Optimizing Text Search: A Novel Pattern Matching Algorithm Based on Ukkonen's Approach
Xinyu Guan, Shaohua Zhang
https://arxiv.org/abs/2512.16927 https://mastoxiv.page/@arXiv_csDS_bot/115762062326187898
- SpIDER: Spatially Informed Dense Embedding Retrieval for Software Issue Localization
Shravan Chaudhari, Rahul Thomas Jacob, Mononito Goswami, Jiajun Cao, Shihab Rashid, Christian Bock
https://arxiv.org/abs/2512.16956 https://mastoxiv.page/@arXiv_csSE_bot/115762248476963893
- MemoryGraft: Persistent Compromise of LLM Agents via Poisoned Experience Retrieval
Saksham Sahai Srivastava, Haoyu He
https://arxiv.org/abs/2512.16962 https://mastoxiv.page/@arXiv_csCR_bot/115762140339109012
- Colormap-Enhanced Vision Transformers for MRI-Based Multiclass (4-Class) Alzheimer's Disease Clas...
Faisal Ahmed
https://arxiv.org/abs/2512.16964 https://mastoxiv.page/@arXiv_eessIV_bot/115762196702065869
- Probing Scientific General Intelligence of LLMs with Scientist-Aligned Workflows
Wanghan Xu, et al.
https://arxiv.org/abs/2512.16969 https://mastoxiv.page/@arXiv_csAI_bot/115762050529328276
- PAACE: A Plan-Aware Automated Agent Context Engineering Framework
Kamer Ali Yuksel
https://arxiv.org/abs/2512.16970 https://mastoxiv.page/@arXiv_csAI_bot/115762054461584205
- A Women's Health Benchmark for Large Language Models
Elisabeth Gruber, et al.
https://arxiv.org/abs/2512.17028 https://mastoxiv.page/@arXiv_csCL_bot/115762049873946945
- Perturb Your Data: Paraphrase-Guided Training Data Watermarking
Pranav Shetty, Mirazul Haque, Petr Babkin, Zhiqiang Ma, Xiaomo Liu, Manuela Veloso
https://arxiv.org/abs/2512.17075 https://mastoxiv.page/@arXiv_csCL_bot/115762077400293945
- Disentangled representations via score-based variational autoencoders
Benjamin S. H. Lyo, Eero P. Simoncelli, Cristina Savin
https://arxiv.org/abs/2512.17127 https://mastoxiv.page/@arXiv_statML_bot/115762251753966702
- Biosecurity-Aware AI: Agentic Risk Auditing of Soft Prompt Attacks on ESM-Based Variant Predictors
Huixin Zhan
https://arxiv.org/abs/2512.17146 https://mastoxiv.page/@arXiv_csCR_bot/115762318582013305
- Application of machine learning to predict food processing level using Open Food Facts
Arora, Chauhan, Rana, Aditya, Bhagat, Kumar, Kumar, Semar, Singh, Bagler
https://arxiv.org/abs/2512.17169 https://mastoxiv.page/@arXiv_qbioBM_bot/115762302873829397
- Systemic Risk Radar: A Multi-Layer Graph Framework for Early Market Crash Warning
Sandeep Neela
https://arxiv.org/abs/2512.17185 https://mastoxiv.page/@arXiv_qfinRM_bot/115762275982224870
- Do Foundational Audio Encoders Understand Music Structure?
Keisuke Toyama, Zhi Zhong, Akira Takahashi, Shusuke Takahashi, Yuki Mitsufuji
https://arxiv.org/abs/2512.17209 https://mastoxiv.page/@arXiv_csSD_bot/115762341541572505
- CheXPO-v2: Preference Optimization for Chest X-ray VLMs with Knowledge Graph Consistency
Xiao Liang, Yuxuan An, Di Wang, Jiawei Hu, Zhicheng Jiao, Bin Jing, Quan Wang
https://arxiv.org/abs/2512.17213 https://mastoxiv.page/@arXiv_csCV_bot/115762574180736975
- Machine Learning Assisted Parameter Tuning on Wavelet Transform Amorphous Radial Distribution Fun...
Deriyan Senjaya, Stephen Ekaputra Limantoro
https://arxiv.org/abs/2512.17245 https://mastoxiv.page/@arXiv_condmatmtrlsci_bot/115762447037143855
- AlignDP: Hybrid Differential Privacy with Rarity-Aware Protection for LLMs
Madhava Gaikwad
https://arxiv.org/abs/2512.17251 https://mastoxiv.page/@arXiv_csCR_bot/115762396593872943
- Practical Framework for Privacy-Preserving and Byzantine-robust Federated Learning
Baolei Zhang, Minghong Fang, Zhuqing Liu, Biao Yi, Peizhao Zhou, Yuan Wang, Tong Li, Zheli Liu
https://arxiv.org/abs/2512.17254 https://mastoxiv.page/@arXiv_csCR_bot/115762402470985707
- Verifiability-First Agents: Provable Observability and Lightweight Audit Agents for Controlling A...
Abhivansh Gupta
https://arxiv.org/abs/2512.17259 https://mastoxiv.page/@arXiv_csMA_bot/115762225538364939
- Warmer for Less: A Cost-Efficient Strategy for Cold-Start Recommendations at Pinterest
Saeed Ebrahimi, Weijie Jiang, Jaewon Yang, Olafur Gudmundsson, Yucheng Tu, Huizhong Duan
https://arxiv.org/abs/2512.17277 https://mastoxiv.page/@arXiv_csIR_bot/115762214396869930
- LibriVAD: A Scalable Open Dataset with Deep Learning Benchmarks for Voice Activity Detection
Ioannis Stylianou, Achintya kr. Sarkar, Nauman Dawalatabad, James Glass, Zheng-Hua Tan
https://arxiv.org/abs/2512.17281 https://mastoxiv.page/@arXiv_csSD_bot/115762361858560703
- Penalized Fair Regression for Multiple Groups in Chronic Kidney Disease
Carter H. Nakamoto, Lucia Lushi Chen, Agata Foryciarz, Sherri Rose
https://arxiv.org/abs/2512.17340 https://mastoxiv.page/@arXiv_statME_bot/115762446402738033
toXiv_bot_toot
Geopolitics, Geoeconomics and Risk:A Machine Learning Approach
Alvaro Ortiz, Tomasa Rodrigo
https://arxiv.org/abs/2510.12416 https://arxiv.org/pdf/2510.124…
Enhanced Sampling for Efficient Learning of Coarse-Grained Machine Learning Potentials
Weilong Chen, Franz G\"orlich, Paul Fuchs, Julija Zavadlav
https://arxiv.org/abs/2510.11148
Q&A with NYC mayoral front-runner Zohran Mamdani on social media, tech leaders, Trump, fame, Apple's and Google's "wrong decision" to remove ICEBlock, and more (Katie Drummond/Wired)
https://www.wired.com/story/the-big-interview-podcast-zohran-mamd…
Optimizing Cross-Domain Transfer for Universal Machine Learning Interatomic Potentials
Jaesun Kim, Jinmu You, Yutack Park, Yunsung Lim, Yujin Kang, Jisu Kim, Haekwan Jeon, Deokgi Hong, Seung Yul Lee, Saerom Choi, Yongdeok Kim, Jae W. Lee, Seungwu Han
https://arxiv.org/abs/2510.11241
Apparently the US government departments are starting to join Bluesky and are getting ratioed in that the accounts are being blocked more than they are followed.
Doesn't really seem to make sense at first. The US Department Of Transportation isn't going to show up as a reply guy in your mentions and the spooks aren't going to use that account to spy on your posts.
Is the blocking then entirely performative? Because blocks are public they are votes?
I guess really it's people deliberately reading the recommended-for-you AI-driven slop feeds.
Blocked users won't show up in your machine-learning robot-recommended feeds that people apparently must be reading over there.
Just not-following would be enough for me, I don't see things I don't follow. But if you read the robot-DJ feeds then anything can show up, so you have to preemptively block it. If only to train the robot shuffle.
#blueSky #fediverse #aiSlopFeed
Machine Learning Frameworks for Large-Scale Radio Surveys: A Summary of Recent Studies
Nikhel Gupta
https://arxiv.org/abs/2510.11145 https://arxiv.org/pdf/…
If you can distinguish, you can express: Galois theory, Stone--Weierstrass, machine learning, and linguistics
Ben Blum-Smith, Claudia Brugman, Thomas Conners, Soledad Villar
https://arxiv.org/abs/2510.09902
Detection of Quadruple Structure Near the ASCC 32 Region via Machine Learning Methods
Mohammad Noormohammadi, Atefeh Javadi, Mehdi Khakian Ghomi
https://arxiv.org/abs/2510.10296
Redefining Cost Estimation in Database Systems: The Role of Execution Plan Features and Machine Learning
Utsav Pathak, Amit Mankodi
https://arxiv.org/abs/2510.05612 https://
'graphviz' is a suite of programs for drawing graphs (In the nodes/edges senses, rather than upwards and to the right sense) - and it uses a file format called 'dot'. Lots of things generate dot output (such as systemd-analyze I mentioned) and it's really easy to generate from scripts and things. 'dotty' is probably the most common program in the suite.
There are some newer formats and programs - but this one is probably the most universal.
Machine Learning-Integrated Hybrid Fluid-Kinetic Framework for Quantum Electrodynamic Laser Plasma Simulations
Sadra Saremi, Amirhossein Ahmadkhan Kordbacheh
https://arxiv.org/abs/2510.11174
Unveiling Gamer Archetypes through Multi modal feature Correlations and Unsupervised Learning
Moona Kanwal, Muhammad Sami Siddiqui, Syed Anael Ali
https://arxiv.org/abs/2510.10263
Chargers vs. Vikings NFL player props: Self-learning AI backs Carson Wentz over 222.5 passing yards on TNF
https://www.cbssports.com/nfl/news/chargers-vikin…
Research in Collaborative Learning Does Not Serve Cross-Silo Federated Learning in Practice
Kevin Kuo, Chhavi Yadav, Virginia Smith
https://arxiv.org/abs/2510.12595 https://
Comparison of Fully Homomorphic Encryption and Garbled Circuit Techniques in Privacy-Preserving Machine Learning Inference
Kalyan Cheerla (University of North Texas), Lotfi Ben Othmane (University of North Texas), Kirill Morozov (University of North Texas)
https://arxiv.org/abs/2510.07457
Wireless Channel Modeling for Machine Learning -- A Critical View on Standardized Channel Models
Benedikt B\"ock, Amar Kasibovic, Wolfgang Utschick
https://arxiv.org/abs/2510.12279
Counsel Health, which uses a medical AI chatbot and human physicians to provide virtual care, raised a $25M Series A led by Andreessen Horowitz and GV (Emma Beavins/Fierce Healthcare)
https://www.fiercehealthcare.com/ai-and-ma
⏰ Electric Vehicle Range Prediction Models: A Review of Machine Learning, Mathematical, and Simulation Approaches
#ev
Crosslisted article(s) found for stat.ML. https://arxiv.org/list/stat.ML/new
[1/3]:
- Performance of Machine Learning Methods for Gravity Inversion: Successes and Challenges
Vahid Negahdari, Shirin Samadi Bahrami, Seyed Reza Moghadasi, Mohammad Reza Razvan
Crosslisted article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[3/3]:
- Fraud detection in credit card transactions using Quantum-Assisted Restricted Boltzmann Machines
Jo\~ao Marcos Cavalcanti de Albuquerque Neto, Gustavo Castro do Amaral, Guilherme Penello Tempor\~ao
https://arxiv.org/abs/2512.17660 https://mastoxiv.page/@arXiv_quantph_bot/115762703945731580
- Vidarc: Embodied Video Diffusion Model for Closed-loop Control
Feng, Xiang, Mao, Tan, Zhang, Huang, Zheng, Liu, Su, Zhu
https://arxiv.org/abs/2512.17661 https://mastoxiv.page/@arXiv_csRO_bot/115762650859932523
- Imputation Uncertainty in Interpretable Machine Learning Methods
Pegah Golchian, Marvin N. Wright
https://arxiv.org/abs/2512.17689 https://mastoxiv.page/@arXiv_statML_bot/115762577479255577
- Revisiting the Broken Symmetry Phase of Solid Hydrogen: A Neural Network Variational Monte Carlo ...
Shengdu Chai, Chen Lin, Xinyang Dong, Yuqiang Li, Wanli Ouyang, Lei Wang, X. C. Xie
https://arxiv.org/abs/2512.17703 https://mastoxiv.page/@arXiv_condmatstrel_bot/115762481116668454
- Breast Cancer Neoadjuvant Chemotherapy Treatment Response Prediction Using Aligned Longitudinal M...
Rahul Ravi, Ruizhe Li, Tarek Abdelfatah, Stephen Chan, Xin Chen
https://arxiv.org/abs/2512.17759 https://mastoxiv.page/@arXiv_eessIV_bot/115762481771898369
- MedNeXt-v2: Scaling 3D ConvNeXts for Large-Scale Supervised Representation Learning in Medical Im...
Roy, Kirchhoff, Ulrich, Rokuss, Wald, Isensee, Maier-Hein
https://arxiv.org/abs/2512.17774 https://mastoxiv.page/@arXiv_eessIV_bot/115762492258209812
- Domain-Aware Quantum Circuit for QML
Gurinder Singh, Thaddeus Pellegrini, Kenneth M. Merz, Jr
https://arxiv.org/abs/2512.17800 https://mastoxiv.page/@arXiv_quantph_bot/115762723607200478
- Visually Prompted Benchmarks Are Surprisingly Fragile
Feng, Lian, Dunlap, Shu, Wang, Wang, Darrell, Suhr, Kanazawa
https://arxiv.org/abs/2512.17875 https://mastoxiv.page/@arXiv_csCV_bot/115762781936221554
- Learning vertical coordinates via automatic differentiation of a dynamical core
Tim Whittaker, Seth Taylor, Elsa Cardoso-Bihlo, Alejandro Di Luca, Alex Bihlo
https://arxiv.org/abs/2512.17877 https://mastoxiv.page/@arXiv_physicsaoph_bot/115762405092703069
- RadarGen: Automotive Radar Point Cloud Generation from Cameras
Tomer Borreda, Fangqiang Ding, Sanja Fidler, Shengyu Huang, Or Litany
https://arxiv.org/abs/2512.17897 https://mastoxiv.page/@arXiv_csCV_bot/115762783246540528
- Distributionally Robust Imitation Learning: Layered Control Architecture for Certifiable Autonomy
Gahlawat, Aboudonia, Banik, Hovakimyan, Matni, Ames, Zardini, Speranzon
https://arxiv.org/abs/2512.17899 https://mastoxiv.page/@arXiv_eessSY_bot/115762532257741954
- Re-Depth Anything: Test-Time Depth Refinement via Self-Supervised Re-lighting
Ananta R. Bhattarai, Helge Rhodin
https://arxiv.org/abs/2512.17908 https://mastoxiv.page/@arXiv_csCV_bot/115762785868778349
toXiv_bot_toot
Potential of multi-anomalies detection using quantum machine learning
Takao Tomono, Kazuya Tsujimura
https://arxiv.org/abs/2510.07055 https://arxiv.org/pdf…
Predicting Crystal Structures and Ionic Conductivity in Li$_{3}$YCl$_{6-x}$Br$_{x}$ Halide Solid Electrolytes Using a Fine-Tuned Machine Learning Interatomic Potential
Jonas B\"ohm, Aur\'elie Champagne
https://arxiv.org/abs/2510.09861
Ethical Considerations Around Machine Learning-Engaged Online Participatory Research - poster from Zooniverse community at #FF2025 https://zenodo.org/records/17779992
New Machine Learning Approaches for Intrusion Detection in ADS-B
Mika\"ela Ngambo\'e, Jean-Simon Marrocco, Jean-Yves Ouattara, Jos\'e M. Fernandez, Gabriela Nicolescu
https://arxiv.org/abs/2510.08333
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[4/5]:
- Sample, Don't Search: Rethinking Test-Time Alignment for Language Models
Gon\c{c}alo Faria, Noah A. Smith
https://arxiv.org/abs/2504.03790 https://mastoxiv.page/@arXiv_csCL_bot/114301112970577326
- A Survey on Archetypal Analysis
Aleix Alcacer, Irene Epifanio, Sebastian Mair, Morten M{\o}rup
https://arxiv.org/abs/2504.12392 https://mastoxiv.page/@arXiv_statME_bot/114357826909813483
- The Stochastic Occupation Kernel (SOCK) Method for Learning Stochastic Differential Equations
Michael L. Wells, Kamel Lahouel, Bruno Jedynak
https://arxiv.org/abs/2505.11622 https://mastoxiv.page/@arXiv_statML_bot/114539065460187982
- BOLT: Block-Orthonormal Lanczos for Trace estimation of matrix functions
Kingsley Yeon, Promit Ghosal, Mihai Anitescu
https://arxiv.org/abs/2505.12289 https://mastoxiv.page/@arXiv_mathNA_bot/114539035462135281
- Clustering and Pruning in Causal Data Fusion
Otto Tabell, Santtu Tikka, Juha Karvanen
https://arxiv.org/abs/2505.15215 https://mastoxiv.page/@arXiv_statML_bot/114550346291754635
- On the performance of multi-fidelity and reduced-dimensional neural emulators for inference of ph...
Chloe H. Choi, Andrea Zanoni, Daniele E. Schiavazzi, Alison L. Marsden
https://arxiv.org/abs/2506.11683 https://mastoxiv.page/@arXiv_statML_bot/114692410563481289
- Beyond Force Metrics: Pre-Training MLFFs for Stable MD Simulations
Maheshwari, Tang, Ock, Kolluru, Farimani, Kitchin
https://arxiv.org/abs/2506.14850 https://mastoxiv.page/@arXiv_physicschemph_bot/114709402590755731
- Quantifying Uncertainty in the Presence of Distribution Shifts
Yuli Slavutsky, David M. Blei
https://arxiv.org/abs/2506.18283 https://mastoxiv.page/@arXiv_statML_bot/114738165218533987
- ZKPROV: A Zero-Knowledge Approach to Dataset Provenance for Large Language Models
Mina Namazi, Alexander Nemecek, Erman Ayday
https://arxiv.org/abs/2506.20915 https://mastoxiv.page/@arXiv_csCR_bot/114754394485208892
- SpecCLIP: Aligning and Translating Spectroscopic Measurements for Stars
Zhao, Huang, Xue, Kong, Liu, Tang, Beers, Ting, Luo
https://arxiv.org/abs/2507.01939 https://mastoxiv.page/@arXiv_astrophIM_bot/114788369702591337
- Towards Facilitated Fairness Assessment of AI-based Skin Lesion Classifiers Through GenAI-based I...
Ko Watanabe, Stanislav Frolov, Aya Hassan, David Dembinsky, Adriano Lucieri, Andreas Dengel
https://arxiv.org/abs/2507.17860 https://mastoxiv.page/@arXiv_csCV_bot/114912976717523345
- PASS: Probabilistic Agentic Supernet Sampling for Interpretable and Adaptive Chest X-Ray Reasoning
Yushi Feng, Junye Du, Yingying Hong, Qifan Wang, Lequan Yu
https://arxiv.org/abs/2508.10501 https://mastoxiv.page/@arXiv_csAI_bot/115032101532614110
- Unified Acoustic Representations for Screening Neurological and Respiratory Pathologies from Voice
Ran Piao, Yuan Lu, Hareld Kemps, Tong Xia, Aaqib Saeed
https://arxiv.org/abs/2508.20717 https://mastoxiv.page/@arXiv_csSD_bot/115111255835875066
- Machine Learning-Driven Predictive Resource Management in Complex Science Workflows
Tasnuva Chowdhury, et al.
https://arxiv.org/abs/2509.11512 https://mastoxiv.page/@arXiv_csDC_bot/115213444524490263
- MatchFixAgent: Language-Agnostic Autonomous Repository-Level Code Translation Validation and Repair
Ali Reza Ibrahimzada, Brandon Paulsen, Reyhaneh Jabbarvand, Joey Dodds, Daniel Kroening
https://arxiv.org/abs/2509.16187 https://mastoxiv.page/@arXiv_csSE_bot/115247172280557686
- Automated Machine Learning Pipeline: Large Language Models-Assisted Automated Dataset Generation ...
Adam Lahouari, Jutta Rogal, Mark E. Tuckerman
https://arxiv.org/abs/2509.21647 https://mastoxiv.page/@arXiv_condmatmtrlsci_bot/115286737423175311
- Quantifying the Impact of Structured Output Format on Large Language Models through Causal Inference
Han Yuan, Yue Zhao, Li Zhang, Wuqiong Luo, Zheng Ma
https://arxiv.org/abs/2509.21791 https://mastoxiv.page/@arXiv_csCL_bot/115287166674809413
- The Generation Phases of Flow Matching: a Denoising Perspective
Anne Gagneux, S\'egol\`ene Martin, R\'emi Gribonval, Mathurin Massias
https://arxiv.org/abs/2510.24830 https://mastoxiv.page/@arXiv_csCV_bot/115462527449411627
- Data-driven uncertainty-aware seakeeping prediction of the Delft 372 catamaran using ensemble Han...
Giorgio Palma, Andrea Serani, Matteo Diez
https://arxiv.org/abs/2511.04461 https://mastoxiv.page/@arXiv_eessSY_bot/115507785247809767
- Generalized infinite dimensional Alpha-Procrustes based geometries
Salvish Goomanee, Andi Han, Pratik Jawanpuria, Bamdev Mishra
https://arxiv.org/abs/2511.09801 https://mastoxiv.page/@arXiv_statML_bot/115547135711272091
toXiv_bot_toot
Falcons vs. 49ers NFL player props: Self-learning AI backs Michael Penix Jr. over 30.5 pass attempts on SNF
https://www.cbssports.com/nfl/news/falcons-49ers-nfl…
Replaced article(s) found for stat.ML. https://arxiv.org/list/stat.ML/new
[1/1]:
- Learning to sample fibers for goodness-of-fit testing
Ivan Gvozdanovi\'c, Sonja Petrovi\'c
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[5/5]:
- CLAReSNet: When Convolution Meets Latent Attention for Hyperspectral Image Classification
Asmit Bandyopadhyay, Anindita Das Bhattacharjee, Rakesh Das
https://arxiv.org/abs/2511.12346 https://mastoxiv.page/@arXiv_csCV_bot/115570753208147835
- Safeguarded Stochastic Polyak Step Sizes for Non-smooth Optimization: Robust Performance Without ...
Dimitris Oikonomou, Nicolas Loizou
https://arxiv.org/abs/2512.02342 https://mastoxiv.page/@arXiv_mathOC_bot/115654870924418771
- Predictive Modeling of I/O Performance for Machine Learning Training Pipelines: A Data-Driven App...
Karthik Prabhakar, Durgamadhab Mishra
https://arxiv.org/abs/2512.06699 https://mastoxiv.page/@arXiv_csPF_bot/115688618582182232
- Minimum Bayes Risk Decoding for Error Span Detection in Reference-Free Automatic Machine Translat...
Lyu, Song, Kamigaito, Ding, Tanaka, Utiyama, Funakoshi, Okumura
https://arxiv.org/abs/2512.07540 https://mastoxiv.page/@arXiv_csCL_bot/115689532163491162
- In-Context Learning for Seismic Data Processing
Fabian Fuchs, Mario Ruben Fernandez, Norman Ettrich, Janis Keuper
https://arxiv.org/abs/2512.11575 https://mastoxiv.page/@arXiv_csCV_bot/115723040285820239
- Journey Before Destination: On the importance of Visual Faithfulness in Slow Thinking
Rheeya Uppaal, Phu Mon Htut, Min Bai, Nikolaos Pappas, Zheng Qi, Sandesh Swamy
https://arxiv.org/abs/2512.12218 https://mastoxiv.page/@arXiv_csCV_bot/115729165330908574
- Non-Resolution Reasoning (NRR): A Computational Framework for Contextual Identity and Ambiguity P...
Kei Saito
https://arxiv.org/abs/2512.13478 https://mastoxiv.page/@arXiv_csCL_bot/115729234145554554
- Stylized Synthetic Augmentation further improves Corruption Robustness
Georg Siedel, Rojan Regmi, Abhirami Anand, Weijia Shao, Silvia Vock, Andrey Morozov
https://arxiv.org/abs/2512.15675 https://mastoxiv.page/@arXiv_csCV_bot/115740141862163631
- mimic-video: Video-Action Models for Generalizable Robot Control Beyond VLAs
Jonas Pai, Liam Achenbach, Victoriano Montesinos, Benedek Forrai, Oier Mees, Elvis Nava
https://arxiv.org/abs/2512.15692 https://mastoxiv.page/@arXiv_csRO_bot/115739947869830764
toXiv_bot_toot
Colts vs. 49ers SGP: 'Monday Night Football' same-game parlay picks, bets, props from SportsLine AI
https://www.cbssports.com/nfl/news/colts-49ers-sgp…
Bionetta: Efficient Client-Side Zero-Knowledge Machine Learning Proving
Dmytro Zakharov, Oleksandr Kurbatov, Artem Sdobnov, Lev Soukhanov, Yevhenii Sekhin, Vitalii Volovyk, Mykhailo Velykodnyi, Mark Cherepovskyi, Kyrylo Baibula, Lasha Antadze, Pavlo Kravchenko, Volodymyr Dubinin, Yaroslav Panasenko
https://arxiv.org/abs/2510.06784
Interpretable Machine Learning for Predicting Startup Funding, Patenting, and Exits
Saeid Mashhadi, Amirhossein Saghezchi, Vesal Ghassemzadeh Kashani
https://arxiv.org/abs/2510.09465
Replaced article(s) found for stat.ML. https://arxiv.org/list/stat.ML/new
[2/2]:
- Learning Shared Representations from Unpaired Data
Amitai Yacobi, Nir Ben-Ari, Ronen Talmon, Uri Shaham
DeepTrust: Multi-Step Classification through Dissimilar Adversarial Representations for Robust Android Malware Detection
Daniel Pulido-Cort\'azar, Daniel Gibert, Felip Many\`a
https://arxiv.org/abs/2510.12310
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[1/5]:
- Feed Two Birds with One Scone: Exploiting Wild Data for Both Out-of-Distribution Generalization a...
Haoyue Bai, Gregory Canal, Xuefeng Du, Jeongyeol Kwon, Robert Nowak, Yixuan Li
https://arxiv.org/abs/2306.09158
- Sparse, Efficient and Explainable Data Attribution with DualXDA
Galip \"Umit Yolcu, Moritz Weckbecker, Thomas Wiegand, Wojciech Samek, Sebastian Lapuschkin
https://arxiv.org/abs/2402.12118 https://mastoxiv.page/@arXiv_csLG_bot/111962593972369958
- HGQ: High Granularity Quantization for Real-time Neural Networks on FPGAs
Sun, Que, {\AA}rrestad, Loncar, Ngadiuba, Luk, Spiropulu
https://arxiv.org/abs/2405.00645 https://mastoxiv.page/@arXiv_csLG_bot/112370274737558603
- On the Identification of Temporally Causal Representation with Instantaneous Dependence
Li, Shen, Zheng, Cai, Song, Gong, Chen, Zhang
https://arxiv.org/abs/2405.15325 https://mastoxiv.page/@arXiv_csLG_bot/112511890051553111
- Basis Selection: Low-Rank Decomposition of Pretrained Large Language Models for Target Applications
Yang Li, Daniel Agyei Asante, Changsheng Zhao, Ernie Chang, Yangyang Shi, Vikas Chandra
https://arxiv.org/abs/2405.15877 https://mastoxiv.page/@arXiv_csLG_bot/112517547424098076
- Privacy Bias in Language Models: A Contextual Integrity-based Auditing Metric
Yan Shvartzshnaider, Vasisht Duddu
https://arxiv.org/abs/2409.03735 https://mastoxiv.page/@arXiv_csLG_bot/113089789682783135
- Low-Rank Filtering and Smoothing for Sequential Deep Learning
Joanna Sliwa, Frank Schneider, Nathanael Bosch, Agustinus Kristiadi, Philipp Hennig
https://arxiv.org/abs/2410.06800 https://mastoxiv.page/@arXiv_csLG_bot/113283021321510736
- Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification
Xiaoyu Tao, Tingyue Pan, Mingyue Cheng, Yucong Luo, Qi Liu, Enhong Chen
https://arxiv.org/abs/2410.18686 https://mastoxiv.page/@arXiv_csLG_bot/113367101100828901
- Fairness via Independence: A (Conditional) Distance Covariance Framework
Ruifan Huang, Haixia Liu
https://arxiv.org/abs/2412.00720 https://mastoxiv.page/@arXiv_csLG_bot/113587817648503815
- Data for Mathematical Copilots: Better Ways of Presenting Proofs for Machine Learning
Simon Frieder, et al.
https://arxiv.org/abs/2412.15184 https://mastoxiv.page/@arXiv_csLG_bot/113683924322164777
- Pairwise Elimination with Instance-Dependent Guarantees for Bandits with Cost Subsidy
Ishank Juneja, Carlee Joe-Wong, Osman Ya\u{g}an
https://arxiv.org/abs/2501.10290 https://mastoxiv.page/@arXiv_csLG_bot/113859392622871057
- Towards Human-Guided, Data-Centric LLM Co-Pilots
Evgeny Saveliev, Jiashuo Liu, Nabeel Seedat, Anders Boyd, Mihaela van der Schaar
https://arxiv.org/abs/2501.10321 https://mastoxiv.page/@arXiv_csLG_bot/113859392688054204
- Regularized Langevin Dynamics for Combinatorial Optimization
Shengyu Feng, Yiming Yang
https://arxiv.org/abs/2502.00277
- Generating Samples to Probe Trained Models
Eren Mehmet K{\i}ral, Nur\c{s}en Ayd{\i}n, \c{S}. \.Ilker Birbil
https://arxiv.org/abs/2502.06658 https://mastoxiv.page/@arXiv_csLG_bot/113984059089245671
- On Agnostic PAC Learning in the Small Error Regime
Julian Asilis, Mikael M{\o}ller H{\o}gsgaard, Grigoris Velegkas
https://arxiv.org/abs/2502.09496 https://mastoxiv.page/@arXiv_csLG_bot/114000974082372598
- Preconditioned Inexact Stochastic ADMM for Deep Model
Shenglong Zhou, Ouya Wang, Ziyan Luo, Yongxu Zhu, Geoffrey Ye Li
https://arxiv.org/abs/2502.10784 https://mastoxiv.page/@arXiv_csLG_bot/114023667639951005
- On the Effect of Sampling Diversity in Scaling LLM Inference
Wang, Liu, Chen, Light, Liu, Chen, Zhang, Cheng
https://arxiv.org/abs/2502.11027 https://mastoxiv.page/@arXiv_csLG_bot/114023688225233656
- How to use score-based diffusion in earth system science: A satellite nowcasting example
Randy J. Chase, Katherine Haynes, Lander Ver Hoef, Imme Ebert-Uphoff
https://arxiv.org/abs/2505.10432 https://mastoxiv.page/@arXiv_csLG_bot/114516300594057680
- PEAR: Equal Area Weather Forecasting on the Sphere
Hampus Linander, Christoffer Petersson, Daniel Persson, Jan E. Gerken
https://arxiv.org/abs/2505.17720 https://mastoxiv.page/@arXiv_csLG_bot/114572963019603744
- Train Sparse Autoencoders Efficiently by Utilizing Features Correlation
Vadim Kurochkin, Yaroslav Aksenov, Daniil Laptev, Daniil Gavrilov, Nikita Balagansky
https://arxiv.org/abs/2505.22255 https://mastoxiv.page/@arXiv_csLG_bot/114589956040892075
- A Certified Unlearning Approach without Access to Source Data
Umit Yigit Basaran, Sk Miraj Ahmed, Amit Roy-Chowdhury, Basak Guler
https://arxiv.org/abs/2506.06486 https://mastoxiv.page/@arXiv_csLG_bot/114658421178857085
toXiv_bot_toot
Performance Analysis of Machine Learning Algorithms in Chronic Kidney Disease Prediction
Iftekhar Ahmed, Tanzil Ebad Chowdhury, Biggo Bushon Routh, Nafisa Tasmiya, Shadman Sakib, Adil Ahmed Chowdhury
https://arxiv.org/abs/2510.09493
Lions vs. Eagles NFL player props, SGP: Self-learning AI backs Jahmyr Gibbs Over 13.5 carries on 'SNF'
https://www.cbssports.com/nfl/news/lions-eagles-nf…
Sentry: Authenticating Machine Learning Artifacts on the Fly
Andrew Gan, Zahra Ghodsi
https://arxiv.org/abs/2510.00554 https://arxiv.org/pdf/2510.00554
DYNAMIX: RL-based Adaptive Batch Size Optimization in Distributed Machine Learning Systems
Yuanjun Dai, Keqiang He, An Wang
https://arxiv.org/abs/2510.08522 https://
Steelers vs. Bengals NFL player props: Self-learning AI backs Chase over 69.5 yards on Thursday Night Football
https://www.cbssports.com/nfl/news/steelers-beng…
PhishSSL: Self-Supervised Contrastive Learning for Phishing Website Detection
Wenhao Li, Selvakumar Manickam, Yung-Wey Chong, Shankar Karuppayah, Priyadarsi Nanda, Binyong Li
https://arxiv.org/abs/2510.05900
Polyharmonic Cascade
Yuriy N. Bakhvalov
https://arxiv.org/abs/2512.17671 https://arxiv.org/pdf/2512.17671 https://arxiv.org/html/2512.17671
arXiv:2512.17671v1 Announce Type: new
Abstract: This paper presents a deep machine learning architecture, the "polyharmonic cascade" -- a sequence of packages of polyharmonic splines, where each layer is rigorously derived from the theory of random functions and the principles of indifference. This makes it possible to approximate nonlinear functions of arbitrary complexity while preserving global smoothness and a probabilistic interpretation. For the polyharmonic cascade, a training method alternative to gradient descent is proposed: instead of directly optimizing the coefficients, one solves a single global linear system on each batch with respect to the function values at fixed "constellations" of nodes. This yields synchronized updates of all layers, preserves the probabilistic interpretation of individual layers and theoretical consistency with the original model, and scales well: all computations reduce to 2D matrix operations efficiently executed on a GPU. Fast learning without overfitting on MNIST is demonstrated.
toXiv_bot_toot
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[4/14]:
- Evolving Machine Learning: A Survey
Martin, Mukherjee, Baimagambetov, Vanschoren, Polatidis
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[8/14]:
- Early-Warning of Thunderstorm-Driven Power Outages with a Two-Stage Machine Learning Model
Iryna Stanishevska
Robust and Efficient Collaborative Learning
Abdellah El Mrini, Sadegh Farhadkhan, Rachid Guerraoui
https://arxiv.org/abs/2510.08311 https://arxiv.org/pdf/2…
Knowledge-Guided Machine Learning Models to Upscale Evapotranspiration in the U.S. Midwest
Aleksei Rozanov, Samikshya Subedi, Vasudha Sharma, Bryan C. Runck
https://arxiv.org/abs/2510.11505
To Ask or Not to Ask: Learning to Require Human Feedback
Andrea Pugnana, Giovanni De Toni, Cesare Barbera, Roberto Pellungrini, Bruno Lepri, Andrea Passerini
https://arxiv.org/abs/2510.08314
Spiral Model Technique For Data Science & Machine Learning Lifecycle
Rohith Mahadevan
https://arxiv.org/abs/2510.06987 https://arxiv.org/pdf/2510.06987…
Physics-Informed Machine Learning in Biomedical Science and Engineering
Nazanin Ahmadi, Qianying Cao, Jay D. Humphrey, George Em Karniadakis
https://arxiv.org/abs/2510.05433 htt…
Crosslisted article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[4/4]:
- EReLiFM: Evidential Reliability-Aware Residual Flow Meta-Learning for Open-Set Domain Generalizat...
Peng, Wen, Yang, Fu, Chen, Liu, Wu, Zheng, Sarfraz, Van Gool, Paudel, Stiefelhagen
Uncertainty in Machine Learning
Hans Weytjens, Wouter Verbeke
https://arxiv.org/abs/2510.06007 https://arxiv.org/pdf/2510.06007
Residual-Informed Learning of Solutions to Algebraic Loops
Felix Brandt, Andreas Heuermann, Philip Hannebohm, Bernhard Bachmann
https://arxiv.org/abs/2510.09317 https://
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[2/14]:
- Learning-based Sketches for Frequency Estimation in Data Streams without Ground Truth
Xinyu Yuan, Yan Qiao, Meng Li, Zhenchun Wei, Cuiying Feng, Zonghui Wang, Wenzhi Chen
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[1/14]:
- Meta-Learning Adaptive Loss Functions
Christian Raymond, Qi Chen, Bing Xue, Mengjie Zhang
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[3/14]:
- OrbitZoo: Multi-Agent Reinforcement Learning Environment for Orbital Dynamics
Alexandre Oliveira, Katarina Dyreby, Francisco Caldas, Cl\'audia Soares
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[7/14]:
- Prompt Optimization Meets Subspace Representation Learning for Few-shot Out-of-Distribution Detec...
Faizul Rakib Sayem, Shahana Ibrahim
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[10/14]:
- MGPATH: Vision-Language Model with Multi-Granular Prompt Learning for Few-Shot WSI Classification
Nguyen, Nguyen, Diep, Nguyen, Ho, Metsch, Maurer, Sonntag, Bohnenberger, Hauschild
Empirical Comparison of Membership Inference Attacks in Deep Transfer Learning
Yuxuan Bai, Gauri Pradhan, Marlon Tobaben, Antti Honkela
https://arxiv.org/abs/2510.05753 https://…
Incentivizing Time-Aware Fairness in Data Sharing
Jiangwei Chen, Kieu Thao Nguyen Pham, Rachael Hwee Ling Sim, Arun Verma, Zhaoxuan Wu, Chuan-Sheng Foo, Bryan Kian Hsiang Low
https://arxiv.org/abs/2510.09240
Learning in an Echo Chamber: Online Learning with Replay Adversary
Daniil Dmitriev, Harald Eskelund Franck, Carolin Heinzler, Amartya Sanyal
https://arxiv.org/abs/2509.25135 htt…
Physics-informed learning under mixing: How physical knowledge speeds up learning
Anna Scampicchio, Leonardo F. Toso, Rahel Rickenbach, James Anderson, Melanie N. Zeilinger
https://arxiv.org/abs/2509.24801
Crosslisted article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[4/5]:
- Application of Deep Reinforcement Learning to At-the-Money S&P 500 Options Hedging
Zofia Bracha, Pawe{\l} Sakowski, Jakub Micha\'nk\'ow
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[7/8]:
- System Prompt Optimization with Meta-Learning
Yumin Choi, Jinheon Baek, Sung Ju Hwang
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[4/8]:
- Latent Variable Modeling in Multi-Agent Reinforcement Learning via Expectation-Maximization for U...
Mazyar Taghavi, Rahman Farnoosh
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[5/8]:
- Spatiotemporal Forecasting as Planning: A Model-Based Reinforcement Learning Approach with Genera...
Wu, Gao, Shi, Li, Xu, Zhang, Zhu, Wang, Luo, Wang, Wu, Huang
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[3/8]:
- EFRame: Deeper Reasoning via Exploration-Filter-Replay Reinforcement Learning Framework
Chen Wang, Lai Wei, Yanzhi Zhang, Chenyang Shao, Zedong Dan, Weiran Huang, Yuzhi Zhang, Yue Wang
EEG-Based Acute Pain Classification: Machine Learning Model Comparison and Real-Time Clinical Feasibility
Aavid Mathrawala, Dhruv Kurup, Josie Lau
https://arxiv.org/abs/2510.05511
From Physics to Machine Learning and Back: Part II - Learning and Observational Bias in PHM
Olga Fink, Ismail Nejjar, Vinay Sharma, Keivan Faghih Niresi, Han Sun, Hao Dong, Chenghao Xu, Amaury Wei, Arthur Bizzi, Raffael Theiler, Yuan Tian, Leandro Von Krannichfeldt, Zhan Ma, Sergei Garmaev, Zepeng Zhang, Mengjie Zhao
https://arxiv.org/abs/…
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[7/7]:
- ParsVoice: A Large-Scale Multi-Speaker Persian Speech Corpus for Text-to-Speech Synthesis
Mohammad Javad Ranjbar Kalahroodi, Heshaam Faili, Azadeh Shakery
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[6/7]:
- CAMERA: Multi-Matrix Joint Compression for MoE Models via Micro-Expert Redundancy Analysis
Yuzhuang Xu, Xu Han, Yuanchi Zhang, Yixuan Wang, Yijun Liu, Shiyu Ji, Qingfu Zhu, Wanxiang Che
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[5/7]:
- Persistent Homology via Ellipsoids
Niklas Canova, Sara Kali\v{s}nik, Aaron Moser, Bastian Rieck, Ana \v{Z}egarac
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[4/7]:
- Asymmetric Proximal Policy Optimization: mini-critics boost LLM reasoning
Liu, Obando-Ceron, Lu, He, Wang, Su, Zheng, Castro, Courville, Pan
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[3/7]:
- OmniDraft: A Cross-vocabulary, Online Adaptive Drafter for On-device Speculative Decoding
Ramakrishnan, Yuan, Zhuo, Feng, Lin, Su, Zhang