
2025-06-26 07:54:40
Robust Anomaly Detection in Network Traffic: Evaluating Machine Learning Models on CICIDS2017
Zhaoyang Xu, Yunbo Liu
https://arxiv.org/abs/2506.19877 https…
Robust Anomaly Detection in Network Traffic: Evaluating Machine Learning Models on CICIDS2017
Zhaoyang Xu, Yunbo Liu
https://arxiv.org/abs/2506.19877 https…
Hybrid Models for Financial Forecasting: Combining Econometric, Machine Learning, and Deep Learning Models
Dominik Stempie\'n, Robert \'Slepaczuk
https://arxiv.org/abs/2505.19617
Agile Management for Machine Learning: A Systematic Mapping Study
Lucas Romao, Hugo Villamizar, Romeu Oliveira, Silvio Alonso, Marcos Kalinowski
https://arxiv.org/abs/2506.20759
From Tiny Machine Learning to Tiny Deep Learning: A Survey
Shriyank Somvanshi, Md Monzurul Islam, Gaurab Chhetri, Rohit Chakraborty, Mahmuda Sultana Mimi, Swagat Ahmed Shuvo, Kazi Sifatul Islam, Syed Aaqib Javed, Sharif Ahmed Rafat, Anandi Dutta, Subasish Das
https://arxiv.org/abs/2506.18927…
Uncertainty-Aware Machine-Learning Framework for Predicting Dislocation Plasticity and Stress-Strain Response in FCC Alloys
Jing Luo, Yejun Gu, Yanfei Wang, Xiaolong Ma, Jaafar. A El-Awady
https://arxiv.org/abs/2506.20839
Predicting wide binaries and deviations from standard gravity using machine learning algorithms
Amoy Ashesh, Harsimran Kaur, Sandeep Aashish
https://arxiv.org/abs/2506.19942
Advancing global sea ice prediction capabilities using a fully-coupled climate model with integrated machine learning
William Gregory, Mitchell Bushuk, Yong-Fei Zhang, Alistair Adcroft, Laure Zanna, Colleen McHugh, Liwei Jia
https://arxiv.org/abs/2505.18328
LARP: Learner-Agnostic Robust Data Prefiltering
Kristian Minchev, Dimitar Iliev Dimitrov, Nikola Konstantinov
https://arxiv.org/abs/2506.20573 https://
Physics-Informed Machine Learning Approach to Modeling Line Emission from Helium-Containing Plasmas
Shin Kajita
https://arxiv.org/abs/2506.20117 https://…
Surrogate normal-forms for the numerical bifurcation and stability analysis of navier-stokes flows via machine learning
Alessandro Della Pia, Dimitrios G. Patsatzis, Gianluigi Rozza, Lucia Russo, Constantinos Siettos
https://arxiv.org/abs/2506.21275
Define-ML: An Approach to Ideate Machine Learning-Enabled Systems
Silvio Alonso, Antonio Pedro Santos Alves, Lucas Romao, H\'elio Lopes, Marcos Kalinowski
https://arxiv.org/abs/2506.20621
This https://arxiv.org/abs/2502.00874 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csDL_…
Machine-Learning-Assisted Photonic Device Development: A Multiscale Approach from Theory to Characterization
Yuheng Chen, Alexander Montes McNeil, Taehyuk Park, Blake A. Wilson, Vaishnavi Iyer, Michael Bezick, Jae-Ik Choi, Rohan Ojha, Pravin Mahendran, Daksh Kumar Singh, Geetika Chitturi, Peigang Chen, Trang Do, Alexander V. Kildishev, Vladimir M. Shalaev, Michael Moebius, Wenshan Cai, Yongmin Liu, Alexandra Boltasseva
Investigating the 2024 swarm like activity offshore Kefalonia Island aided by Machine Learning algorithms
V. Anagnostou, E. Papadimitriou, V. Karakostas, T. Back
https://arxiv.org/abs/2505.17221
This https://arxiv.org/abs/2505.09551 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_qfi…
Ah fuck, people are using LLMs for kernel code. They really are going to fuck over everything, aren't they?
https://lwn.net/SubscriberLink/1026558/9f3079fb392c4a9a/
Modern search demands scalable personalisation. Join Piotr Kobziakowski
at this year's Berlin Buzzwords to discover how Vespa's multi-stage ranking and tensor framework can be used for hybrid queries, multimodal retrieval, and real-time machine learning. Learn how to deploy low-latency, high-relevance search systems at petabyte scale.
Learn more:
B0 -> K*0 tau tau- Decay: Using Machine Learning to Separate Signal from Background
Ziyao Xiong, Qixing Deng, Yidan Sun, Junhua Yang
https://arxiv.org/abs/2506.19501
Automatic Depression Assessment using Machine Learning: A Comprehensive Survey
Siyang Song, Yupeng Huo, Shiqing Tang, Jiaee Cheong, Rui Gao, Michel Valstar, Hatice Gunes
https://arxiv.org/abs/2506.18915
Recommendation systems in e-commerce applications with machine learning methods
Aneta Poniszewska-Maranda, Magdalena Pakula, Bozena Borowska
https://arxiv.org/abs/2506.17287
Extreme Learning Machines for Exoplanet Simulations: A Faster, Lightweight Alternative to Deep Learning
Tara P. A. Tahseen, Lu\'is F. Sim\~oes, Kai Hou Yip, Nikolaos Nikolaou, Jo\~ao M. Mendon\c{c}a, Ingo P. Waldmann
https://arxiv.org/abs/2506.19679
Quantum Advantage in Learning Quantum Dynamics via Fourier coefficient extraction
Alice Barthe, Mahtab Yaghubi Rad, Michele Grossi, Vedran Dunjko
https://arxiv.org/abs/2506.17089 …
Using Machine Learning in Analyzing Air Quality Discrepancies of Environmental Impact
Shuangbao Paul Wang, Lucas Yang, Rahouane Chouchane, Jin Guo, Michael Bailey
https://arxiv.org/abs/2506.17319
This https://arxiv.org/abs/2406.11369 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_csCG_…
CT Radiomics-Based Explainable Machine Learning Model for Accurate Differentiation of Malignant and Benign Endometrial Tumors: A Two-Center Study
Tingrui Zhang, Honglin Wu, Zekun Jiang, Yingying Wang, Rui Ye, Huiming Ni, Chang Liu, Jin Cao, Xuan Sun, Rong Shao, Xiaorong Wei, Yingchun Sun
https://arxiv.org/abs/2506.18106
SuperSONIC: Cloud-Native Infrastructure for ML Inferencing
Dmitry Kondratyev, Benedikt Riedel, Yuan-Tang Chou, Miles Cochran-Branson, Noah Paladino, David Schultz, Mia Liu, Javier Duarte, Philip Harris, Shih-Chieh Hsu
https://arxiv.org/abs/2506.20657
Why Robots Are Bad at Detecting Their Mistakes: Limitations of Miscommunication Detection in Human-Robot Dialogue
Ruben Janssens, Jens De Bock, Sofie Labat, Eva Verhelst, Veronique Hoste, Tony Belpaeme
https://arxiv.org/abs/2506.20268
Learning from the Storm: A Multivariate Machine Learning Approach to Predicting Hurricane-Induced Economic Losses
Bolin Shen, Eren Erman Ozguven, Yue Zhao, Guang Wang, Yiqun Xie, Yushun Dong
https://arxiv.org/abs/2506.17964
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[5/5]:
- mSTEB: Massively Multilingual Evaluation of LLMs on Speech and Text Tasks
Beyene, Verma, Ma, Alabi, Schmidt, Nakatumba-Nabende, Adelani
Machine Learning-Based Near-Field Localization in Mixed LoS/NLoS Scenarios
Parisa Ramezani, Seyed Jalaleddin Mousavirad, Mattias O'Nils, Emil Bj\"ornson
https://arxiv.org/abs/2506.17810
Machine Learning with Privacy for Protected Attributes
Saeed Mahloujifar, Chuan Guo, G. Edward Suh, Kamalika Chaudhuri
https://arxiv.org/abs/2506.19836 htt…
Supervised Similarity for Firm Linkages
Ryan Samson, Adrian Banner, Luca Candelori, Sebastien Cottrell, Tiziana Di Matteo, Paul Duchnowski, Vahagn Kirakosyan, Jose Marques, Kharen Musaelian, Stefano Pasquali, Ryan Stever, Dario Villani
https://arxiv.org/abs/2506.19856
Causal Decomposition Analysis with Synergistic Interventions: A Triply-Robust Machine Learning Approach to Addressing Multiple Dimensions of Social Disparities
Soojin Park, Su Yeon Kim, Xinyao Zheng, Chioun Lee
https://arxiv.org/abs/2506.18994
Piecewise Linear Approximation in Learned Index Structures: Theoretical and Empirical Analysis
Jiayong Qin, Xianyu Zhu, Qiyu Liu, Guangyi Zhang, Zhigang Cai, Jianwei Liao, Sha Hu, Jingshu Peng, Yingxia Shao, Lei Chen
https://arxiv.org/abs/2506.20139
Comparative analysis of machine learning techniques for feature selection and classification of Fast Radio Bursts
Ailton J. B. J\'unior, J\'eferson A. S. Fortunato, Leonardo J. Silvestre, Thonimar V. Alencar, Wiliam S. Hip\'olito-Ricaldi
https://arxiv.org/abs/2506.18854
HAWC Performance Enhanced by Machine Learning in Gamma-Hadron Separation
R. Alfaro, C. Alvarez, A. Andr\'es, E. Anita-Rangel, M. Araya, J. C. Arteaga-Vel\'azquez, D. Avila Rojas, H. A. Ayala Solares, R. Babu, P. Bangale, E. Belmont-Moreno, A. Bernal, T. Capistr\'an, A. Carrami\~nana, F. Carre\'on, S. Casanova, U. Cotti, E. De la Fuente, D. Depaoli, P. Desiati, N. Di Lalla, R. Diaz Hernandez, M. A. DuVernois, J. C. D\'iaz-V\'elez, K. Engel, T. Ergin, C. Espinoza,…
Machine Learning-based Context-Aware EMAs: An Offline Feasibility Study
Zachary D King, Maryam Khalid, Han Yu, Kei Shibuya, Khadija Zanna, Marzieh Majd, Ryan L Brown, Yufei Shen, Thomas Vaessen, George Kypriotakis, Christopher P Fagundes, Akane Sano
https://arxiv.org/abs/2506.15834
Modeling phase transformations in Mn-rich disordered rocksalt cathodes with charge-informed machine-learning interatomic potentials
Peichen Zhong, Bowen Deng, Shashwat Anand, Tara Mishra, Gerbrand Ceder
https://arxiv.org/abs/2506.20605
Advanced For-Loop for QML algorithm search
FuTe Wong
https://arxiv.org/abs/2506.18260 https://arxiv.org/pdf/2506.18260
Replaced article(s) found for stat.ML. https://arxiv.org/list/stat.ML/new
[2/2]:
- Proofs as Explanations: Short Certificates for Reliable Predictions
Avrim Blum, Steve Hanneke, Chirag Pabbaraju, Donya Saless
Smart Cuts: Enhance Active Learning for Vulnerability Detection by Pruning Bad Seeds
Xiang Lan, Tim Menzies, Bowen Xu
https://arxiv.org/abs/2506.20444 http…
The Persistent Effects of Peru's Mining MITA: Double Machine Learning Approach
Alper Deniz Karakas
https://arxiv.org/abs/2506.18947 https://
This https://arxiv.org/abs/2504.16152 has been replaced.
initial toot: https://mastoxiv.page/@arXiv_qbi…
Generative Machine-Learning-Systeme überfordern uns alle - wir sollten das auch zugeben.
Tom Davenport, x-facher Buchautor und Wissensmanagement-Experte meinte, dass er trotz Verfassen von 2 Büchern zum Thema keine Ahnung habe, wie es bezüglich GMLS weitergehen werde.
https://blog.doeb…
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[4/5]:
- WyckoffDiff -- A Generative Diffusion Model for Crystal Symmetry
Kelvinius, Andersson, Parackal, Qian, Armiento, Lindsten
Microsoft has once again been named a Leader in the 2025 Gartner® Magic Quadrant™ for Data Science and Machine Learning (DSML) Platforms.
https://azure.microsoft.com/en-us/blog
DPG loss functions for learning parameter-to-solution maps by neural networks
Pablo Cort\'es Castillo, Wolfgang Dahmen, Jay Gopalakrishnan
https://arxiv.org/abs/2506.18773
Multi-Armed Bandits With Machine Learning-Generated Surrogate Rewards
Wenlong Ji, Yihan Pan, Ruihao Zhu, Lihua Lei
https://arxiv.org/abs/2506.16658 https:/…
Replaced article(s) found for stat.ML. https://arxiv.org/list/stat.ML/new
[1/2]:
- Efficient uniform approximation using Random Vector Functional Link networks
Palina Salanevich, Olov Schavemaker
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[3/5]:
- Flexible Infinite-Width Graph Convolutional Neural Networks
Ben Anson, Edward Milsom, Laurence Aitchison
Transformer Based Multi-Target Bernoulli Tracking for Maritime Radar
Caden Sweeney, Du Yong Kim, Branko Ristic, Brian Cheung
https://arxiv.org/abs/2506.20319
Analysis of Photonic Circuit Losses with Machine Learning Techniques
Adrian Nugraha Utama, Simon Chun Kiat Goh, Li Hongyu, Wang Xiangyu, Zhou Yanyan, Victor Leong, Manas Mukherjee
https://arxiv.org/abs/2506.17999
Massive Atomic Diversity: a compact universal dataset for atomistic machine learning
Arslan Mazitov, Sofiia Chorna, Guillaume Fraux, Marnik Bercx, Giovanni Pizzi, Sandip De, Michele Ceriotti
https://arxiv.org/abs/2506.19674
Amplifying Machine Learning Attacks Through Strategic Compositions
Yugeng Liu, Zheng Li, Hai Huang, Michael Backes, Yang Zhang
https://arxiv.org/abs/2506.18870
Conservative quantum offline model-based optimization
Kristian Sotirov, Annie E. Paine, Savvas Varsamopoulos, Antonio A. Gentile, Osvaldo Simeone
https://arxiv.org/abs/2506.19714 …
NetSenseML: Network-Adaptive Compression for Efficient Distributed Machine Learning
Yisu Wang, Xinjiao Li, Ruilong Wu, Huangxun Chen, Dirk Kutscher
https://arxiv.org/abs/2506.16235
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[2/5]:
- Supporting renewable energy planning and operation with data-driven high-resolution ensemble weat...
Wang, Chao, Yang, Nai, Ren, Deng, Chen, Liu, Wen, Xiao, Zhang, Wang, Guan, Pan
A Neural-Operator Surrogate for Platelet Deformation Across Capillary Numbers
Marco Laudato
https://arxiv.org/abs/2506.20341 https://…
Causality in the human niche: lessons for machine learning
Richard D. Lange, Konrad P. Kording
https://arxiv.org/abs/2506.13803 https://
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[1/5]:
- Backpropagation Through Time For Networks With Long-Term Dependencies
George Bird, Maxim E. Polivoda
Modern approaches to building effective interpretable models of the property market using machine learning
Irina G. Tanashkina, Alexey S. Tanashkin, Alexander S. Maksimchuik, Anna Yu. Poshivailo
https://arxiv.org/abs/2506.15723
Which Company Adjustment Matter? Insights from Uplift Modeling on Financial Health
Xinlin Wang, Mats Brorsson
https://arxiv.org/abs/2506.19049 https://
[2025-06-26 Thu (UTC), 8 new articles found for stat.ML Machine Learning]
toXiv_bot_toot
A Common Pool of Privacy Problems: Legal and Technical Lessons from a Large-Scale Web-Scraped Machine Learning Dataset
Rachel Hong, Jevan Hutson, William Agnew, Imaad Huda, Tadayoshi Kohno, Jamie Morgenstern
https://arxiv.org/abs/2506.17185
Dynamics of tidal spiral arms: Machine learning-assisted identification of equations and application to the Milky Way
Marcel Bernet, Pau Ramos, Teresa Antoja, Adrian Price-Whelan, Steven L. Brunton, Tetsuro Asano, Alexandra Gir\'on-Soto
https://arxiv.org/abs/2506.17383
Machine Learning Accelerates Raman Computations from Molecular Dynamics for Materials Science
David A. Egger, Manuel Grumet, Tom\'a\v{s} Bu\v{c}ko
https://arxiv.org/abs/2506.19595
Global Convergence of Iteratively Reweighted Least Squares for Robust Subspace Recovery
Gilad Lerman, Kang Li, Tyler Maunu, Teng Zhang
https://arxiv.org/abs/2506.20533
How Do Community Smells Influence Self-Admitted Technical Debt in Machine Learning Projects?
Shamse Tasnim Cynthia, Nuri Almarimi, Banani Roy
https://arxiv.org/abs/2506.15884
An Attack Method for Medical Insurance Claim Fraud Detection based on Generative Adversarial Network
Yining Pang, Chenghan Li
https://arxiv.org/abs/2506.19871
Comparative analysis of financial data differentiation techniques using LSTM neural network
Dominik Stempie\'n, Janusz Gajda
https://arxiv.org/abs/2505.19243
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[2/4]:
- Realistic Image-to-Image Machine Unlearning via Decoupling and Knowledge Retention
Ayush K. Varshney, Vicen\c{c} Torra
Enhanced Image Recognition Using Gaussian Boson Sampling
Si-Qiu Gong, Ming-Cheng Chen, Hua-Liang Liu, Hao Su, Yi-Chao Gu, Hao-Yang Tang, Meng-Hao Jia, Yu-Hao Deng, Qian Wei, Hui Wang, Han-Sen Zhong, Xiao Jiang, Li Li, Nai-Le Liu, Chao-Yang Lu, Jian-Wei Pan
https://arxiv.org/abs/2506.19707
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[1/4]:
- A Robust Twin Parametric Margin Support Vector Machine for Multiclass Classification
Renato De Leone, Francesca Maggioni, Andrea Spinelli
Reducing Self-Interaction Error in Transition-Metal Oxides with Different Exact-Exchange Fractions for Energy and Density
Harshan Reddy Gopidi, Ruiqi Zhang, Yanyong Wang, Abhirup Patra, Jianwei Sun, Adrienn Ruzsinszky, John P. Perdew, Pieremanuele Canepa
https://arxiv.org/abs/2506.20635 …
Malware Classification Leveraging NLP & Machine Learning for Enhanced Accuracy
Bishwajit Prasad Gond, Rajneekant, Pushkar Kishore, Durga Prasad Mohapatra
https://arxiv.org/abs/2506.16224
Replaced article(s) found for stat.ML. https://arxiv.org/list/stat.ML/new
[1/1]:
- Constructive Universal Approximation and Finite Sample Memorization by Narrow Deep ReLU Networks
Mart\'in Hern\'andez, Enrique Zuazua
Diverse polymorphs and phase transitions in van der Waals In$_2$Se$_3$
Mingfeng Liu, Jiantao Wang, Peitao Liu, Qiang Wang, Zhibo Liu, Yan Sun, Xing-Qiu Chen
https://arxiv.org/abs/2506.21248
Trustworthy Artificial Intelligence for Cyber Threat Analysis
Shuangbao Paul Wang, Paul Mullin
https://arxiv.org/abs/2506.19052 https://
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[4/4]:
- Controllable Video Generation with Provable Disentanglement
Shen, Zhu, Li, Xie, Tang, Deka, Liu, Chen, Zhang
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[3/4]:
- Iterative Minimax Games with Coupled Linear Constraints
Huiling Zhang, Zi Xu, Yu-Hong Dai
Leveraging Transfer Learning to Overcome Data Limitations in Czochralski Crystal Growth
Milena Petkovic, Natasha Dropka, Xia Tang, Janina Zittel
https://arxiv.org/abs/2506.18774
[2025-06-25 Wed (UTC), 7 new articles found for stat.ML Machine Learning]
toXiv_bot_toot
Machine Learning Potentials for Alloys: A Detailed Workflow to Predict Phase Diagrams and Benchmark Accuracy
Siya Zhu, Doguhan Sariturk, Raymundo Arroyave
https://arxiv.org/abs/2506.16771
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[2/11]:
- Navigating Conflicting Views: Harnessing Trust for Learning
Jueqing Lu, Wray Buntine, Yuanyuan Qi, Joanna Dipnall, Belinda Gabbe, Lan Du
KnowML: Improving Generalization of ML-NIDS with Attack Knowledge Graphs
Xin Fan Guo, Albert Merono Penuela, Sergio Maffeis, Fabio Pierazzi
https://arxiv.org/abs/2506.19802
Unveiling defect motifs in amorphous GeSe using machine learning interatomic potentials
Minseok Moon, Seungwoo Hwang, Jaesun Kim, Yutack Park, Changho Hong, Seungwu Han
https://arxiv.org/abs/2506.15934
[2025-06-25 Wed (UTC), 77 new articles found for cs.LG Machine Learning]
toXiv_bot_toot
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[11/11]:
- Generative Modeling of Full-Atom Protein Conformations using Latent Diffusion on Graph Embeddings
Aditya Sengar, Ali Hariri, Daniel Probst, Patrick Barth, Pierre Vandergheynst
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[10/11]:
- FRAMES-VQA: Benchmarking Fine-Tuning Robustness across Multi-Modal Shifts in Visual Question Answ...
Chengyue Huang, Brisa Maneechotesuwan, Shivang Chopra, Zsolt Kira
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[9/11]:
- Cramming 1568 Tokens into a Single Vector and Back Again: Exploring the Limits of Embedding Space...
Yuri Kuratov, Mikhail Arkhipov, Aydar Bulatov, Mikhail Burtsev
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[8/11]:
- Radio Map Prediction from Aerial Images and Application to Coverage Optimization
Fabian Jaensch, Giuseppe Caire, Beg\"um Demir
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[7/11]:
- Disentangling representations of retinal images with generative models
Sarah M\"uller, Lisa M. Koch, Hendrik P. A. Lensch, Philipp Berens
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[6/11]:
- Bohdi: Heterogeneous LLM Fusion with Automatic Data Exploration
Junqi Gao, Zhichang Guo, Dazhi Zhang, Dong Li, Runze Liu, Pengfei Li, Kai Tian, Biqing Qi
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[5/11]:
- Memorization to Generalization: Emergence of Diffusion Models from Associative Memory
Bao Pham, Gabriel Raya, Matteo Negri, Mohammed J. Zaki, Luca Ambrogioni, Dmitry Krotov
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[4/11]:
- AutoPDL: Automatic Prompt Optimization for LLM Agents
Claudio Spiess, Mandana Vaziri, Louis Mandel, Martin Hirzel
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[3/11]:
- One-Step is Enough: Sparse Autoencoders for Text-to-Image Diffusion Models
Surkov, Wendler, Mari, Terekhov, Deschenaux, West, Gulcehre, Bau
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[1/11]:
- On the fast convergence of minibatch heavy ball momentum
Raghu Bollapragada, Tyler Chen, Rachel Ward
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[9/9]:
- Incentivize Contribution and Learn Parameters Too: Federated Learning with Strategic Data Owners
Drashthi Doshi, Aditya Vema Reddy Kesari, Swaprava Nath, Avishek Ghosh, Suhas S Kowshik
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[4/9]:
- Eau De $Q$-Network: Adaptive Distillation of Neural Networks in Deep Reinforcement Learning
Th\'eo Vincent, Tim Faust, Yogesh Tripathi, Jan Peters, Carlo D'Eramo
Replaced article(s) found for cs.LG. https://arxiv.org/list/cs.LG/new
[3/9]:
- Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning
Zhao, Zhou, Zhang, Zhu, Shen, Li, Yang, Wang, Su, Kuang, Wei, Wu, Cheng